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ABSTRACT 

 

Reconfigurable radio frequency (RF) devices are attractive for miniaturization of wireless 

components and systems by handling functionality of multiple distinct devices. Existing 

reconfiguration techniques rely on device loadings with semiconductor diodes, ferrite/ferroelectric 

materials, and microelectromechanical system (MEMS) switches and capacitors. However, it is 

well-recognized that these techniques cannot fully address important system metrics such as high 

efficiency, wide frequency tuning range, high power handling capability and cost. Therefore, novel 

alternative techniques are highly desirable to advance the state of the art in reconfigurable RF 

devices. The aim of this dissertation is to investigate the novel concept of microfluidically loaded 

reconfigurability within the context of RF antennas and imaging systems. The proposed devices 

operate based on continuously movable microfluidic loads consisting of metal (liquid/solid) and 

dielectric solutions. Microfluidics and microfabrication techniques are utilized with flexible/rigid 

multilayered substrates to maximize the reconfigurable loading effect on the devices and enable 

highly reconfigurable antennas and imaging array realizations. Specifically, a wideband frequency 

tunable monopole antenna is introduced by utilizing continuously movable liquid metal within the 

microfluidic channel as a length varying conductor. By resorting to ultra-thin channel walls, the 

liquid metal volume overlapping with the microstrip line feed is utilized as a non-radiating 

capacitive excitation point to achieve the realized 4:1 (1.29GHz – 5.17GHz) frequency tuning 

range. Subsequently, an alternative design that replaces liquid metal volume with a 

microfluidically movable metallized plate is introduced. This novel liquid-metal-free 
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implementation alleviates the liquid metal associated drawbacks of reliability, long-term device 

operation, and efficiency. The antenna is shown to provide 2:1 (1.6GHz – 3.3GHz) frequency 

tuning range with > 87 % radiation efficiency. Due to the high radiation efficiency, the antenna is 

also capable of handling 15 W of RF power which is 10 W more than its liquid metal counterpart. 

This metallized plate approach is also suitable for reconfiguration of miniature antennas, and this 

is demonstrated with the design/implementation of a microfluidically reconfigurable top loaded 

monopole antenna. It is also suitable for reconfiguration of other structures such as textile antennas 

– and this is demonstrated with a 0.8GHz to 1.4GHz frequency reconfigurable textile antenna 

realization. The last section of the dissertation introduces a novel surface imaging array realization 

by utilizing the microfluidically reconfigurable metallized plate as an RF read-out circuit 

component. Specifically, a 24 element imaging array is designed and validated to operate within 

6 – 12 GHz band with subwavelength resonators to demonstrate the possibility of constructing 

low-cost high-resolution microwave surface imaging arrays by utilizing the microfluidics based 

reconfiguration techniques. The presented work emphasizes system level implementation of the 

proposed devices by integrating them with micropump units, controller boards, and investigating 

their reliability performances under higher power RF excitations. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Motivation 

 Reconfigurable radio frequency (RF) antennas and filters have drawn growing interest to 

enable compact and light weight multifunctional systems for wireless communications, sensor 

networks and biomedical imaging systems. Some of the key performance metrics of these RF 

devices include 1) compact size; 2) cost; 3) power handling; 4) frequency tunability bandwidth; 5) 

scanning range; 6) reconfiguration speed; 7) radiation efficiency; and 8) frequency agile capability. 

Recent literature has extensively investigated the reconfiguration capabilities offered by material 

loadings [1-3], varactors [4-6], PIN diodes [7-9], ferroelectric varactors [10-12], 

microelectromechanical systems (MEMS) switches and MEMS capacitors [13-19]. These 

techniques are well recognized to offer compact and cost effective high reconfiguration speed. 

However, they continue to exhibit drawbacks in terms of several RF performance metrics such as 

the range of frequency tunability, power handling capability, and radiation efficiency. 

Semiconductor and ferroelectric varactors result in low efficient RF device implementation with 

small frequency tuning ranges [9, 10]. Their power handling capabilities are also limited with the 

device size and third order intermodulation products. MEMS capacitors and switches enable low 

loss device implementations, however they do not provide continuous frequency tunability [11] 

and high power handling capability [12, 13]. Implementing imaging systems using MEMS and 

PIN diodes is costly due to substantial hardware requirements in terms of RF switch components, 

control circuits and bias networks. Novel alternative techniques that address the overall 
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performance needs of reconfigurable RF devices are highly desirable in order to advance their 

capabilities. This dissertation effort specifically proposes to investigate the novel concept of 

microfluidically loaded reconfigurability within the context of RF antennas, and imaging systems. 

1.2 Brief Overview of Existing Technology 

1.2.1 Frequency Reconfigurable Antennas 

Frequency reconfigurability of electrically small antennas can enable development of 

smaller form software defined radios and spectrum aware systems. Material loadings [3], 

ferroelectric varactors [5, 6, 15], RF MEMS switches [8, 11] and RF MEMS capacitors [7,12] are 

currently the main technologies that are being extensively investigated for realizing tunable RF 

antennas. Literature survey reveals that frequency tunability ranges of varactor loaded antennas 

are below 2:1. RF MEMS can be used to extend the range by physically changing the structural 

shape of the RF devices but reconfiguration only happens at discrete frequency steps due to the 

practical challenges of incorporating a high number of switches. The performance of these state-

of-art frequency reconfigurable RF devices are well recognized to be limited by the tunability and 

power handling capabilities of their varactors and switches. Due to their potential for addressing 

such needs, microfluidics based reconfigurability has recently drawn attention for implementation 

of reconfigurable antennas. For example, stretchability of the liquid metal filled polymer substrates 

have been demonstrated for frequency tunable and flexible antennas [20-22]. Loading of antenna 

substrates with different type of liquids exhibiting diverse permittivity values has been proposed 

for frequency reconfigurability [23]. A continuously movable liquid metal slug inside plastic 

tubing has been used as a parasitic director to generate beam steering from a circular loop antenna 

[24] and a frequency tunable Yagi-Uda monopole array [25]. Microfluidically repositionable 

liquid metal patch antennas have been utilized behind microwave lenses to generate beam-
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scanning mm-wave focal plane arrays [26]. However, microfluidics based reconfigurability being 

an emerging technology still has many practical concerns which need to be addressed. A major 

goal of this dissertation is to advance the state of such reconfigurable antennas from simplistic 

conceptual laboratory prototype demonstrations to system level integrations by employing 

microfabrication, packaging and controlling techniques. 

1.2.2 Microwave Imaging System 

Current mm and sub-mm imaging approaches utilize a single or a small number of 

detectors to acquire 2D images by making use of mechanical raster scans [27-30]. The image 

information is collected through the use of rotating mirrors or translation stages that are controlled 

using slow precision motors. Consequently, the overall system becomes costly and bulky. In 

addition, these systems require a significant amount of time to acquire high resolution images. 

These provide a hindrance to their implementation in real-time monitoring systems. In order to 

alleviate the issues regarding real time imaging recent literature review suggests employing tightly 

packed arrays of direct mm-wave detectors behind extended hemispherical lenses. In these 

approaches an imaging pixel consists of an antenna coupled to a rectifying device such as micro-

bolometer [31], hetero structure backward diode [32], or metal-insulator-metal junction [33]. 

Although direct detection allows for a compact pixel size by removing the need for filters, local 

oscillators and mixers, the DC pads incorporated within the pixels to extract the rectified THz 

signal become as large as the antenna itself beyond 200GHz due to size limitations imposed by the 

flip chip technology [34]. In this dissertation a novel approach of microfluidically loaded 

microstrip lines for convenient realization of RF read-out circuitries for large format sub-

wavelength imaging arrays is investigated for the first time. The proposed microfluidically 

controlled parasitic RF loads will essentially act as RF shorting circuits when the microchannels 
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are separated from the microstrip lines with a thin insulator layer. As part of this dissertation further 

investigation will be made to develop a system level implementation of this proposed imaging 

array. RF measurements circuitries, microprocessor controller, micropump unit, software interface 

with computers for back-end data processing and other necessary components will be built on a 

single board along with the imaging array. 

1.3 Contributions 

Microfluidic based reconfigurability has been demonstrated to offer many potential 

advantages but there are several challenges related to their fabrication, packaging, power handling 

capability, actuation, reliability and repeatability that need to be addressed. This dissertation 

addresses these challenges through; 

(a) the development of unique fabrication procedures that help in packaging and integration of 

microfluidic channels onto conventional printed circuit boards, 

(b) implementing frequency tunable antennas using metallized plates as the 

radiating/switching element which improve their power handling capability and reliability, 

(c) integrating electronically switched micropumps for accurate control over movement of 

metallized plate inside a microchannel, 

(d) demonstrating system level implementation of the reconfigurable devices by integrating 

them with controller boards, micropump units, and software interfaces. 

1.4 Dissertation Organization 

The outline of the dissertation is as follows: 

(a) Chapter 2 gives background on conventional methods for implementing frequency tunable 

antennas. 
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(b) Chapter 3 presents a wideband frequency tunable liquid metal monopole. Specifically, the 

antenna is demonstrated to have a 4:1 (1.29GHz- 5.17GHz) tuning range with a tuning 

speed of 252MHz/sec. 

(c) Chapter 4 describes a monopole antenna in which a metallized plate is used as the radiating 

element instead of liquid metal. The higher conductivity of metalized plate increases the 

power handling capability of this monopole antenna over the previous implementation. To 

show this, the power handling capability of these monopole antennas are studied for the 

first time through multiphysics simulations and experiments. Specifically, the presented 

monopole operates over a wide frequency tuning range from 1.7GHz to 3.5GHz (~2:1) 

with a measured realized gain >2.4dB. It exhibits 200% more power handling capability as 

compared to the prior implementation. 

(d) Chapter 5 describes a microfluidically switched dipole antenna. The switching element is 

implemented using a selectively metallized plate. By moving the plate over the antenna 

trace it modifies the electrical length of the current on the dipole thereby tuning its 

frequency. The chapter further describes this switching technique being applied to a textile 

version of the dipole. 

(e) Chapter 6 describes a microfluidically switched surface imaging system at microwave 

frequencies. The imaging system consists of a 1D array of complementary open loop 

resonators being interrogated individually using a metallized plate. 2D imaging capability 

is achieved by using a stepper motor controlled stage. The system is interfaced to a 

computer using LabVIEW for back-end data processing. A patterned printed circuit board 

is imaged using the imaging system to demonstrate its operation and resolution. 

(f) Chapter 7 concludes this dissertation. 
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CHAPTER 2: BACKGROUND 

 

2.1 Introduction 

This chapter presents a review of the different technologies that have been traditionally 

used for implementing frequency tunable antennas. The advantages and disadvantages of the 

respective technologies have been summarized. A review of the recent interest in using 

microfluidics for implementing frequency tunable antennas has also been presented. This chapter 

highlights the advantages of microfluidic based tunability with reference to relevant examples. The 

chapter concludes summarizing the challenges that have not yet been addressed by it which paves 

the way for the works presented in the following chapters. 

2.2 Frequency Tunable Antennas 

The demand for multifunctional systems are continually growing with the rapid progress 

in the field of communications. Traditional systems that were meant for single frequency of 

operation are being replaced with systems capable of utilizing access over a wide spectrum of 

frequencies. These modern portable wireless systems require antennas that can cover multiple 

frequencies. Frequency tunable antennas that can alter its radiating frequency without affecting its 

other parameters such as radiation efficiency, field pattern have been viewed as a blessing for such 

systems. Such antennas can replace a number of single-function antennas thereby reducing the 

overall size, cost, and complexity of a system while improving performance. Implementing such 

frequency tunability has been achieved using various techniques which have been described in the 

following sections. 
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2.2.1 Frequency Tunability Using RF-MEMS Switch and Capacitors 

Frequency tunable antennas implemented using RF-MEMS (Radio Frequency Micro-

Electro Mechanical Systems) switches and capacitors have garnered a lot of interest [35-41].  This 

tuning technique offers the advantages of low insertion loss, low power consumption by the bias 

network, fast switching speeds, high Q-factor and ease of integration on low dielectric substrates. 

In [35] a frequency reconfigurable antenna is presented which can operate in two different 

frequency bands (700MHz and 4900MHz). The planar inverted F-antenna is reconfigured between 

the two frequency states using a single RF MEMS switch placed strategically along the antenna 

geometry. The switch is used to alter the path length of the current on the antenna which in turn 

enables the antenna to reconfigure its operating frequency. A 2-bit Ka band frequency tunable slot 

antenna has been demonstrated in [36]. The coplanar waveguide fed slot antenna can be tuned to 

different frequency states over 28GHz-35GHz using the RF MEMS switches placed along the 

radiating slot. The RF MEMS switch when actuated shorten the length of the radiating slot thereby 

increasing the resonant frequency of the antenna. Apart from changing the electrical path or 

antenna aperture RF MEMS capacitors have been used to tune the operating frequency of the 

antenna [37]. The presented slot antenna is loaded with a stub on which MEMS variable capacitors 

are placed periodically. The capacitors are used to change the electrical properties of the stub i.e., 

characteristic impedance and electrical length which in turn affect the resonant frequency. 

Different from the previously mentioned approaches, in [38] a five band reconfigurable PIFA 

antenna for mobile phone applications has been introduced which uses the technique of loading or 

re-matching the antenna externally using RF MEMS switches. This technique provides the 

attractive option of reconfiguration implemented entirely in the circuit domain since all switching 

and biasing circuitry is kept off the antenna structure. Another popular method of implementing 
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frequency reconfiguration using RF MEMS switches is the pixel antenna concept [39-41]. The 

main radiating antenna geometry is discretized into small sections, called pixels, and 

interconnected by means of RF-switches. By activating different switch configurations, the 

antenna surface is reshaped, thus reconfiguring its frequency and radiation characteristics. It has 

also been proposed that instead of discretizing the antenna, a parasitic pixel layer capable of 

reconfiguring the resonance frequency can also be used leading to significant advantages in switch 

biasing, power handling and integration possibilities. 

2.2.2 Frequency Tunability Using PIN Diodes 

Frequency tunable antennas implemented using the switching technique mentioned in the 

previous section have also been developed using PIN diodes as the switching element. PIN diodes 

offer the advantages of higher breakdown voltage, low RF on resistance, fast switching which 

make them very lucrative as RF switches [42-46]. A compact planar reconfigurable slot antenna 

has been shown to operate over a wide tuning range of 1.7:1 using PIN diodes [42]. A single-fed 

resonant slot loaded with a series of PIN diode switches forms the antenna whose tuning is realized 

by changing its effective electrical length. This is done by controlling the bias voltages of the PIN 

diodes along the slot antenna. Planar inverted F-antennas (PIFA) which have gain widespread 

attention on account of their suitability for mobile applications stand to benefit a lot from frequency 

tunability. This has been demonstrated in [43] through a PIFA loaded with a PIN diode wherein 

no separate dc control unit for the switch is needed. The dc voltage is carried to the switch 

simultaneously with the RF signal. The antenna covers the frequency ranges appropriate to the 

GSM850, GSM900, GSM1800, PCS1900, and UMTS telecommunication standards.  

The incorporation of PIN diodes as part of the radiating element requires placing biasing 

lines in the antenna radiating plane. This can lead to undesirable resonances in the antenna 
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operating band as well as changes in the antenna radiation pattern if the bias lines are not designed 

properly. Several techniques addressing this challenge have been proposed [44-47]. In [44] a novel 

design technique of placing the PIN diodes on the ground plane has been discussed. In this 

technique the ground plane of the microstrip monopole antenna is modified by strategically placing 

the PIN diodes to obtain triple band coverage. The feed line and the main radiating square stub are 

left untouched which mitigate degradation of input matching and radiation as the antenna is 

switched. Furthermore, reconfigurable filtering antennas (filtennas) have also been introduced as 

a solution to avoid placing the switching components on the radiating antenna part [45,46]. This 

is done by incorporating a tunable bandpass filter in the antenna feed line. The filter is reconfigured 

using PIN diodes. In [45] a filtering slot antenna covering 2.1GHz long term evolution (LTE) and 

2.4GHz wireless fidelity (Wi-Fi) bands is shown while [46] shows a similar antenna being tuned 

over 5.2GHz to 5.5GHz.  In such filtennas the integration of the antenna and the bandpass filter 

reduces the effect of the bias lines and leads to more compact devices and improves the 

performance of the RF front ends. 

2.2.3 Frequency Tunability Using Varactor Diodes 

Electrically tunable antennas have been implemented using PIN diodes and RF MEMS 

switches as shown in the previous sections. Varactor diodes have become a popular choice for 

implementing such electrically tunable antennas on account of several reasons. They consume less 

dc power because of their low current consumption, they can be easily integrated with antennas 

due to their small package sizes and are available commercially in wide variety. These advantages 

are highlighted by implementing a varactor loaded H-shaped microstrip antenna (HMSA) [47]. In 

this design the multi-band functionality of the antenna is achieved by careful selection of the 

position of the varactors so that for a specific range of the varactors’ bias voltages, a specific mode 
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of the multi-mode HMSA is matched, whereas the other modes are mismatched. To show the 

further advantages of using varactors in developing frequency tunable antennas, a slot loop antenna 

is discussed in [48]. Slot loop antennas have the inherent advantage of being uniplanar which 

makes it easier to fabricate but at the same time it is difficult to obtain wideband matching over 

the entire tuning range. Using varactor tuned matching network a single coplanar waveguide feed 

to the antenna is implemented and demonstrated to have a wide tuning range of 6.71GHz to 

9.14GHz. To obtain even wider tuning range of 1.5:1 a stub loaded varactor tuned microstrip 

antenna is demonstrated in [49]. The square microstrip patch is loaded with 12 identical stubs 

distributed evenly along the 4 edges. The stubs are connected to the square patch using varactors. 

This approach allows to simultaneously vary the resonance frequency in vertical and horizontal 

directions with two independent reverse bias voltages. Novel antenna design methodologies have 

also been investigated to further extract the utility of using varactors. In [50] a dual band slot loop 

antenna is proposed. By loading the slot edge with varactors, the phase of edge current is affected, 

and so are the resonant frequencies of the slot. In [51] a miniaturized printed planar antenna using 

split-ring resonator to form a dual-band frequency-tunable antenna is shown. By carefully 

choosing the position of loaded varactors high isolation between the high band and the low band 

are achieved with independent tunability of each bands. 

2.2.4 Frequency Tunability Using Tunable Materials 

The use of tunable materials in developing frequency reconfigurable antennas is a 

relatively new field. Though the proliferation of these type of antennas has been hindered by 

challenges such as reliability and efficiency of the antennas, several promising prospects have been 

reviewed in this section. In [52] a ferroelectric dielectric based antenna is shown which can be 

tuned by varying the applied DC voltage. The dielectric constant of the ferroelectric material is 
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modulated by varying the applied electric field in a direction perpendicular to the propagation of 

the signal. At microwave frequencies similar technique of voltage modulated antenna is shown 

which uses liquid crystal as the substrate [53]. The antenna can be tuned from 34.1GHz to 37.7GHz 

by varying the applied DC voltage from 0V to 90V. The use of liquid crystal at microwave 

frequencies is facilitated by their low power consumption and lower loss [54]. Another approach 

which demonstrates frequency tunability while miniaturizing the antenna at the same time is by 

using magneto-dielectric materials as the antenna substrate [55]. The 3D inverted F-antenna can 

be tuned to cover the DVB-H frequency band. 

2.2.5 Frequency Tunability Using Mechanical Reconfiguration 

The frequency tunable antenna topologies discussed above utilize lumped tunable 

components. In these approaches the non-linearity of the tuning element, added loss as well as 

difficulty in maintaining the radiation properties limit the operation of the antennas over a wide 

tuning range (>2:1). Recently in applications where RF switches are not desired due to the 

additional power losses and complexity of the bias lines, mechanically tunable antennas have been 

being investigated [56-58]. The mechanically tunable antennas are promising devices as they can 

provide reduced RF loss, higher isolation, and better linearity with respect to antenna structures 

integrated with electronic switches. In [56] a dual-band tunable slot antenna is presented with a 

tuning ratio of 2.6:1 is obtained. The tunability is accomplished by employing a rack and pinion 

mechanism to slide parasitic patches over the antenna to vary the slot lengths and thus the 

frequency of operation of each band. A new method of employing planar Hoberman linkages on 

top of a circular microstrip antenna is shown in [57]. The linkages are used to move parasitic 

patches on top of the circular microstrip antenna to vary its operating frequency from 2.25GHz to 

3.02GHz. Multilayer stretchable conductors which retain their conductivity under strain have been 
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used to build low-cost and robust frequency tunable antennas [58]. The conductors which are 

formed by combining a thin layer of rubber and metal exhibit high conductivity with large 

elasticity. Antennas build on such substrates can be made to operate at different operating 

frequency by applying strain that physically stretches the antenna geometry. 

The tunability of antennas implemented using the above mentioned techniques satisfy most 

of the requirements of a frequency tunable antenna. However, there are some aspects such as the 

range of frequency tunability, power handling capability, and radiation efficiency that are still not 

addressed by them. On account of their ability to potentially address these shortcomings 

microfluidics based reconfiguration has been pursued with great interest by many researchers in 

recent years. Microfluidics based reconfigurable antennas have been demonstrated to have wider 

tuning range and higher power handling capability than those obtained using the conventional 

techniques discussed above. In the following section the concept of microfluidics and its varied 

applications in the field of biomedical research has been presented. This is followed by a review 

on current state-of-the-art of microfluidically tunable antennas. 

2.3 Microfluidics 

Microfluidics found its origin in microbiology where it was used as a tool to manipulate 

very small volumes of samples and reagents. This was a very compelling feature for microanalysis 

as it opened up the possibilities to implement several functions in a small and yet cheap device. 

With further progress in microfluidics research these devices were used for fast and in-situ 

detections of bacteriological threats. The growth of these devices was further stimulated by 

incorporation of well-developed microfabrication techniques for their production. Though the 

initial devices were based on silicon and glass on account of their compatibility with 
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microfabrication techniques soon they were replaced with soft polymers due to their lower cost, 

higher biocompatibility and other physical properties such as flexibility and optical transparency.  

2.3.1 Materials 

Microfluidic devices have been built using many different materials over the years. The 

different materials, their advantages and disadvantages have been summarized as follows: 

 Silicon was one of the first materials to be used for building microfluidic devices on 

account of its compatibility with standard microfabrication processes. Silicon possesses 

many advantageous qualities such as thermal conductivity, surface stability and solvent 

compatibility. However, the opacity of silicon to the visible electromagnetic spectrum 

made its adoption into microfluidics difficult. The etching of the microfluidic channels in 

silicon requires complex manufacturing processes such as wet anisotropic etching or deep 

reactive ion etching (DRIE) which hinder low cost rapid prototyping.    

 Possessing similar qualities as of silicon, glass came into being the popular material of 

choice for fabricating microfluidic devices as it was optically transparent. Properties such 

as high pressure resistance, hydrophilic surface, electrical insulation, biocompatibility 

made it a lucrative option. The higher cost of the raw material coupled with the long 

isotropic wet-etching time to define the channels though marked its limitations.   

 The difficulty in integrating silicon and glass into microfluidics paved the way for a new 

class of materials called polymers. Polymers helped bridge the gap between the ideal 

material for microfluidic devices and glass/silicon. They can be mass produced using soft 

lithography, hot embossing, and injection-molding techniques which make rapid 

prototyping much easier. In addition, polymers have lower cost, transparency in the 

visible/UV spectrum, and surface modification possibilities. The different types of 
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polymers that have been used for microfluidic devices are polydimethylsiloxane (PDMS), 

polystyrene (PS), polycarbonate (PC), polymethymethacrylate (PMMA). In this 

dissertation PDMS has been used for fabricating all the microfluidic channels due to its 

surface modification properties when exposed to oxygen plasma. This was a key enabler 

in developing the reconfigurable RF devices and will be discussed in detail in the following 

chapters. 

2.3.2 Applications 

Microfluidic devices due to their ability to precisely control very small volumes of liquids 

have found many applications in the biomedical field. One of its main applications has been to 

develop lab-on-chip devices. These devices can integrate all the functionalities of a laboratory on 

a single chip. The usefulness of such devices is evident by following their adoption in different 

biomedical applications such as pH control, cell analysis, and drug administering. For example, in 

cell culture experiments having a controlled environment is of utmost importance and one of the 

prime factors that needs to be monitored is the pH of the medium. Researchers have been able to 

control precisely the pH of such environment using microfluidic devices. These devices use ion-

sensitive field-effect transistor (ISFET) coupled with pulse modulated lab-on-chip valves. The 

transistor sense the change in pH which is used as a feedback to the control valves. The valves 

regulate the flow of different solutions into the microfluidic device to control the pH of the cell 

environment. Probably the application that best summarizes the advantages of lab-on-chip devices 

is point of care testing (POC). POC means medical analysis that can be carried out at the patient 

site. The intrinsic features of microfluidic devices such as low consumption of reagents and 

sample, miniaturization of device, disposable and low-cost make them ideally suited for POC 

applications. More recent application of microfluidics is towards developing reconfigurable RF 



www.manaraa.com

15 
 

devices with functionality that are more advanced than classical reconfigurable ones. The linear 

nature of the reconfiguration technique makes them ideally suited for high power applications.  

The next section presents a review of such devices. 

2.3.3 Frequency Tunability Using Microfluidics 

Frequency tunable antennas reconfigured using microfluidics have recently drawn 

attention on account of their significant advantages as compared to ones implemented using 

diodes, varactors and MEMS. A review of relevant work shows various types of antennas 

demonstrating frequency tunability using microfluidic tuning [59-77]. In these antennas the 

microfluidically controlled loads acting as either shorting, loading, or main radiating element are 

moved using different actuation mechanisms. The following section presents examples of such 

antennas to help readers develop better understanding about their working principle. 

In the shorting based approach liquid metal is used as the microfluidically controlled 

shorting switch. This technique has been used to implement frequency tunable patch [59] and slot 

antennas [60]. The frequency tunable patch antenna uses eutectic-indium gallium (EGaIn) filled 

channels as the switching element. The channels filled with liquid metal are bonded to the top of 

the microstrip patch antenna. When pressure is applied to the liquid metal it flows inside the 

channels to alter the electrical continuity across three gaps on the antenna geometry. This elongates 

the antenna and tunes it from 2.4GHz to 1.6GHz. For the frequency tunable slot antenna, a 

microfluidic channel is placed perpendicular to its length. The pressure driven channel is filled 

with liquid metal (EGaIn) to shorten the length of the radiating slot and thereby tune its resonating 

frequency. In such shorting based approaches oxidization of the EGaIn (liquid metal) has been 

seen to be the most pressing concern. To minimize the residue left behind by EGaIn inside the 
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microchannels, researchers have investigated use of different carrier liquids and microchannel 

surface coatings as potential solutions [61]. 

In the loading based approach, microfluidically controlled loads are placed on top of the 

radiating antenna to alter the electromagnetic fields, thereby changing its resonating properties. 

These reactive loads can either be liquid metals [62, 63] or liquid dielectrics [64, 65]. Slot antennas 

have been seen as the preferred type for implementing such reactive loading based frequency 

tunable antennas [62-67]. In [66] a reconfigurable CPW fed folded slot antenna was realized by 

loading liquid metal bridges across the radiating slot. The position of the liquid metal bridges is 

determined based on the desired resonating frequencies. By filling or emptying of the respective 

bridges, the antenna is shown to resonate at 2.4GHz, 3.5GHz and 5.8GHz. Similar technique of 

reactive loading of a dual band slot antenna is seen in [67]. The antenna consists of two slots for 

its dual band operation. Each of the two slots can be loaded with reactive liquid metal loads, one 

for providing lower band tuning of 1.8GHz to 3.1GHz and the other for upper band tuning from 

3.2GHz to 5.4GHz. The antenna can provide a frequency coverage ratio of 3:1. Apart from liquid 

metal, liquid dielectrics have also been shown as effective loads for tuning the resonant frequency 

of slot antennas. In [65] the surface of an annular slot antenna is integrated with microfluidic 

channels. The first and the second resonant frequencies can then be independently tuned by 

flowing liquid dielectrics such as acetone and de-ionized water through the channels. The antenna 

shows tunability from 3.3GHz to 4.2GHz for first resonance and 5.2GHz to 8GHz for the second 

resonance. 

In more examples of liquid metal based loading technique patch antennas have also been 

investigated by researchers [68, 69]. The frequency tunable patch antenna demonstrated in [68] 

consists of a U-shaped slot etched into the ground plane. Microfluidic channels are placed directly 
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aligned with the slot. By filling the channels with liquid metal using pressure driven syringes the 

reactive loading of the slot is diminished. This increases the resonant frequency of the antenna 

from 1.85GHz to 2.07GHz. Similar pressure driven technique of moving liquid metal cylindrical 

loads to tune a dual band patch antenna is shown in [69]. In this approach channels filled with 

liquid metal are placed along the non-radiating edge of the antenna. As the liquid metal cylinder 

inside the channel moves under the patch antenna, the antenna demonstrates dual band behavior. 

The separation between the lower and upper band increases with increase in the overlap distance. 

The antenna can achieve frequency coverage ratios in the range of 1.08 to 1.3. 

The microfluidic loads can also be used as the main radiating component of the antenna. 

In such applications liquid metals are an attractive choice as their inherent property of taking the 

shape of the channel they are pumped into helps to define the antenna geometry [70-74] (shape, 

dimensions). To demonstrate the concept, the simplistic example of a monopole antenna is 

discussed in [70]. The radiating frequency of the monopole antenna is defined by its length. The 

volume of liquid metal being pumped into the capillary is controlled by using electrochemical 

actuation. This changes the length of the monopole thereby tuning its resonating frequency over a 

0.66GHz to 3.4GHz bandwidth. Similar actuation technique is applied to implement a frequency 

tunable crossed dipole antenna [73]. In this work DC voltage is applied to each arm of the dipole 

to shorten or lengthen the liquid metal slugs in the respective arms. The linearly-polarized 

resonances of the antenna can be tuned over 0.8GHz to 3GHz. It can be switched to circular 

polarization and tuned over 0.89GHz to 1.63GHz. In addition to using liquid metal as the movable 

element, frequency tunable antennas defined using static liquid metal can also be found in relevant 

works [75-77]. In these cases, the liquid metal is filled into elastomeric channels to define the 

shape of the antenna (patch [75], dipole [77]). The frequency tunability is then achieved by 
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physically stretching the liquid metal filled elastomer. The self-healing property of liquid metal 

ensures that the antenna stretches without any discontinuities being formed. 

2.3.4 Challenges with Microfluidic Based Tunability 

The review of current state-of-the-art microfluidic based tunable antennas has 

demonstrated their several advantages however, there are still many challenges that need to be 

addressed. These include fabrication of the device, actuation and accurate control over the 

movement of the microfluidic load inside the channels, power handling capability of the antennas, 

their reliability and repeatability.  

2.3.4.1 Fabrication 

The microfluidic channels are generally fabricated in the elastomer polydimethylsiloxane 

(PDMS) using standard soft-lithographic technique. The issue arises when these channels need to 

be integrated on top of the printed circuit board (PCB). The PCB has the antenna or the feed line 

etched on it. To obtain tunability the microfluidic load needs to electromagnetically couple to the 

antenna/feed line. In each of these cases the distance between the microfluidic load (inside the 

channel) and the copper (etched on top of the PCB) needs to be very small to ensure good coupling 

between them. In most of the relevant works mentioned in the review on frequency tunability using 

microfluidics, a thin layer of spin-coated PDMS is used as the bonding layer between the channel 

and the PCB. The PDMS coated PCB is exposed to oxygen plasma which modifies its surface 

properties making it conducive to covalently bond to the channel surface (also made using PDMS 

and exposed to oxygen plasma). Although this technique ensures close separation between the 

channel and the PCB, the increased loss of intermediate PDMS layer makes the antenna more lossy 

(especially at higher frequencies) and thereby lowers its efficiency. New bonding materials need 

to be investigated which have a lower loss than PDMS and also higher thermal conductivity. The 
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increased thermal conductivity is needed to ensure that the antennas can operate at high input 

power conditions as it is one of the significant advantages of using linear microfluidic devices. 

2.3.4.2 Actuation 

The antennas implemented using movable microfluidic loads require an actuation method 

to achieve the desired tuning capability. The method implemented should be repeatable and enable 

accurate positioning of the movable loads. The positioning is extremely important as it affects the 

response of the antenna. Pressure driven systems discussed in the literature review mostly employ 

manual syringes as the actuation mechanism. While this simplistic approach is suitable for 

experimental purposes, they need to be replaced with low power and electronically controlled 

systems that can apply the hydraulic pressure. The electronic control will help in automatic tuning 

of the antenna based on the desired resonant frequency while low power is essential requirement 

for any stand-alone portable system. 

2.3.4.3 Power Handling Capability 

Antennas generally have two power specifications, operating under high peak power for 

short duration and, high average power for long duration. Microfluidic based antennas are expected 

to withstand such power handling requirements due to their linear tuning scheme. Further 

experiments need to be performed to support this as well evaluate the failures that can occur due 

to the high power levels. It would also help to develop and verify thermal simulation models 

similar to their electromagnetic counterparts that can predict the maximum power levels a 

particular antenna can handle. 

2.3.4.4 Reliability and Repeatability 

The liquid metal based microfluidic antennas offer significant enhancement in terms of 

tuning range compared to other methods. There is however still some concern over the reliability 
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and repeatability of these antennas. The liquid metals (EGaIn, Galinstan) used in these applications 

tend to get oxidized very easily and leave residue inside the channels making continuous 

movement challenging. Alternative techniques need to be investigated that can alleviate such 

issues. 

2.4 Conclusion 

In this chapter a brief review of frequency tunable antennas and the techniques used for 

implementing them has been presented. The concept of microfluidics and its varied applications 

in the field of biomedical research has been discussed to help readers develop a better 

understanding regarding this technology. Then the advantages of using microfluidics in the context 

of reconfigurable antennas has been highlighted. A detailed review of frequency tunable antennas 

implemented using microfluidic reconfiguration is performed. The chapter concludes with the 

challenges still faced by microfluidic based tunability. The solutions to such challenges will be 

presented through the implementation of reconfigurable antennas in the following chapters. 
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CHAPTER 3: WIDEBAND FREQUENCY TUNABLE LIQUID METAL MONOPOLE 

ANTENNA 

 

3.1 Note to Reader 

 Portions of this chapter have been previously published in [78,79], and have been 

reproduced with permission from IEEE. Permission is included in Appendix A. 

3.2 Introduction 

The demanding size reduction needs of multifunctional communication systems have 

generated interest in reconfigurable antenna technologies. A reconfigurable antenna can 

potentially alleviate the need for multiple antennas by providing versatility in terms of frequency, 

bandwidth, polarization, and radiation pattern. As reported in the literature review in the previous 

chapter the reconfiguration capabilities offered by material loadings [1-3], varactors [4-6], PIN 

diodes [7-9], ferroelectric varactors [10-12], microelectromechanical systems (MEMS) switches 

and MEMS capacitors [13-19] have been extensively investigated. Due to their drawbacks in terms 

of range of frequency tunability, power handling capability, and radiation efficiency alternative 

reconfiguration techniques are being investigated. In this regard microfluidics based 

reconfigurability has recently drawn attention for implementation of such reconfigurable antennas. 

In this chapter a liquid metal monopole antenna that can dynamically change its length to provide 

significant frequency tunability has been introduced [78]. Since liquid metals are known to react 

with conventional metals used in printed circuit boards, a key enabler of this monopole antenna 

was the realization of its feeding mechanism with capacitive coupling that ensures the isolation of 



www.manaraa.com

22 
 

the liquid metal volume. The high level of RF coupling between the microstrip line and the antenna 

was accomplished by manufacturing the microfluidic channels by bonding a 1 mil (=25.4μm) thick 

low loss liquid crystal polymer (LCP) substrate with a relatively thick (~2mm) 

Polydimethylsiloxane (PDMS) substrate. A detailed investigation of the antenna concept 

introduced in [30] is presented. Furthermore, an enhanced 4:1 (1.29GHz to 5.17GHz) frequency 

tuning range is achieved by resorting to a different feed coupling scheme [79]. A system level 

implementation of the 4:1 tunable antenna with external micropumps is presented. Microfluidic 

channel dimensions used for the antenna implementation are selected through detailed flow 

characterizations to achieve a high frequency tuning speed with reliable liquid metal volume 

movement. The antenna is shown to operate with a tuning speed of 242.5 MHz/s and exhibit >1.3 

dB measured realized gain across its frequency tuning range. 

The presented frequency tunable monopole antenna also allows for high gain antenna 

arrays that could be reconfigured to operate over a wide frequency tuning range. Most importantly, 

when resorted to meandered or interconnected microfluidic channels, the implementation of such 

arrays can again be accomplished by using a single bi-directional micropump unit. To demonstrate 

this capability, in this chapter, a 4×1 linear broadside array operating from 2.5GHz to 5GHz is 

designed and experimentally verified. The array is shown to operate with measured >6 dB 

broadside gain and a tuning speed of 125 MHz/s. The chapter is organized as follows. Section 1.2 

introduces the liquid metal monopole implemented using a meandered coupled line approach. The 

design and fabrication details are discussed along with the experimental verification of the 

monopole. Section 1.3 introduces the 4:1 frequency tunable liquid metal monopole antenna 

concept and carries out an example design based on computational simulations and experimental 

microfluidic channel flow characterization studies. Section 1.4 presents a 4×1 linear broadside 
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array to demonstrate the potential of the presented technique in realizing wideband frequency 

tunable high gain antenna arrays. A micropump unit comprising of microcontroller controlled 

piezoelectric micropumps was developed to facilitate portability of the antenna array. 

3.3 Liquid Metal Monopole Using Meandered Coupled Line 

3.3.1 Design 

Figure. 3.1(a) demonstrates the layered structure of the liquid metal tunable monopole 

antenna and 3.1(b) shows the top view. A 50mm long liquid metal slug embedded inside a 

microchannel filled with low loss Teflon® solution is fed by a 50Ω microstrip line printed over a 

readily available 1.57mm thick Rogers RT5880 substrate. Through simulation based studies 

carried out with Momentum® suite of Agilent Advanced Design System (ADS), the minimum 

overlap length that provides sufficient RF coupling between the feed and the liquid metal slug was 

determined as 5mm. Therefore, the lowest operation frequency for this antenna is achieved at about 

1.5 GHz when a 45mm long monopole is realized. When the monopole length is reduced to 5mm, 

the expected resonance frequency is ~5GHz. The back surface of the feed layer substrate is used 

as the ground plane. To maintain the radiation pattern of the antenna close to be omnidirectional 

over this broad frequency tuning range, the width and length of the ground plane was selected to 

be less than a wavelength at the highest operating frequency. Through simulations, the smallest 

ground plane size that can provide a good impedance match for the lower end of the tuning range 

was determined as 25×30mm2. Since tuning is achieved by partially retracting the liquid metal 

antenna over the feed line, the final design step is to ensure that the enlargement of this overlap 

area/length does not degrade the impedance matching. A straight microchannel based 

implementation of this overlap region was found to result in a bad impedance matching 

performance as shown in Figure. 3.2(a) for frequencies above 3.1 GHz. This was associated with 
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the formation of a resonant coupled line structure within the overlap region. To overcome this 

issue, the shape of the channel retracted over the feed line was meandered. As shown in Figure. 

3.2(b), the meandered channel based monopole was able to provide a well matched |S11| (i.e. <-

10dB) over the entire tuning range of 1.5GHz to 5GHz with peak gain of 2.4dB realized at 4.2GHz. 

The simulated efficiency was >54% throughout the tuning range. 

Figure 3.1: Liquid metal monopole antenna. (a) Substrate stack-up; (b) Top view. 

(a) 
(b) 

Figure 3.2: Simulated |S11| performance of the liquid metal monopoles exhibiting (a) Straight 

and; (b) Meandered coupling sections. 

(a) (b) 
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3.3.2 Fabrication 

The mold of the 100μm thick 1mm wide microchannel defining the shape of the monopole 

antenna was fabricated in 2mm thick PDMS using soft-lithography. To define the inlet and outlet 

for the liquid flow, 1mm diameter holes were punched into the PDMS mold. Thick PDMS blocks 

with punched holes acting as microfluidic adapters for PTFE pipes were fabricated separately and 

irreversibly bonded on top of the inlet/outlet of this PDMS mold using the oxygen plasma 

treatment. To seal the microchannel, the PDMS mold was bonded to a thin layer of LCP (25μm) 

using a customized 3-Aminopropyl triethoxysilane (APTES) treatment. The bonded PDMS-LCP 

pair carrying the microchannel was placed on top of the feed line. To prevent stiction with the 

microchannel walls, mercury (σ=106 S/m) was employed as the liquid metal. Syringes were 

utilized for reconfiguring the antenna in the experimental verifications. 

3.3.3 Measured Performance 

The fabricated antenna is shown in Figure. 3.3(a). The antenna layers were aligned and 

clamped during the measurements. The snapshots depicting the position of the liquid metal 

monopole at different operational frequencies are presented in Figure. 3.3(b). The measured |S11| 

performance agrees well with the simulated performance. Due to the air gaps between the feed 

board and the antenna substrate, the lowest operational frequency of the antenna was realized at 

1.7GHz instead of the simulated 1.4 GHz. By changing the antenna length, the resonance 

frequency was shifted up to 4.9GHz without degrading the |S11|<-10dB impedance matching. 

Representative normalized E-plane radiation patterns measured at several frequencies are 

demonstrated in Figure. 3(d). Specifically, the antenna demonstrated an almost stable pattern 

despite having a fixed size ground plane. In the E-plane, the measured peak realized gain values 

varied between 2.3dB and 0.5dB. 
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3.4 Frequency Tunable Liquid Metal Monopole Using Tapered Feed Line 

In the previous section a monopole antenna using coupled meandered line approach was 

presented. The antenna tuning range was limited by the appearance of the couple line resonance at 

higher frequencies. To address this issue in this section a tapered feed line monopole antenna is 

presented. Figure. 3.5 depicts the 4:1 liquid metal monopole and its substrate stack-up. The liquid 

metal is enclosed inside a microfluidic channel fabricated within 2 mm thick Polydimethylsiloxane  

Figure 3.3: (a) Fabricated antenna; (b) Snapshots of the monopole configured to operate at 

different frequencies. 

(b) (a) 

(a) (b) 

Figure 3.4: (a) Measured |S11| performance for different radiating lengths; (b) Measured E-plane 

normalized radiation patterns at different frequencies. 
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(PDMS, εr=2.8, tanδ=0.02) using soft lithography process. The microfluidic channel is sealed 

using a 1mil thick (1mil = 0.0001inches = 25.4µm) Rogers Ultralam 3908 liquid crystal polymer 

(LCP) based substrate layer (εr=2.9, tanδ= 0.0025). The LCP layer is bonded to a 62mil thick 

Rogers RT5880 substrate (εr=2.2, tanδ=0.0009) that carries a 50Ω microstrip feed line and ground 

plane metallization. The microfluidic channel is aligned with the microstrip feed line to generate 

capacitive coupling through the 1mil thick LCP layer. The non-liquid metal volume of the 

microfluidic channel is filled with low loss Teflon solution (DuPont AF 2400, 400S2-100). A 

bidirectional micropump unit is used to reconfigure the physical length of the antenna by 

retracting a portion of the liquid metal volume to reside over the microstrip feed line (see Figure. 

3.6). 

Figure 3.5: (a) Liquid metal monopole with widened feed; (b) Substrate stack-up. 

(a) (b) 

Figure 3.6: Reconfiguration principle of the monopole antenna. 
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This reconfiguration technique relies on the ability to form a continuous liquid metal slug 

inside the microfluidic channel. Physically long slugs forming the radiating part of the antenna are 

necessary for achieving a low frequency of operation and wideband frequency tuning range. On 

the other hand, a wider overlap area between the microstrip line and the liquid metal slug increases 

the capacitive coupling necessary to realize a virtual RF short at the feed point. Consequently, the 

range of realizable liquid metal slug widths and lengths must be identified before proceeding with 

a specific antenna design. To do so, a series of experiments were performed to determine the 

maximum realizable physical length and width of the liquid metal slug under different microfluidic 

channel heights. 

3.4.1 Liquid Metal Flow Characterization 

To characterize the channel dimension effects on the length of the liquid metal slug, five 

sets of microfluidic channels were fabricated. Each set included 60mm long microfluidic channels 

with widths varying from 0.5mm to 5mm. Each set had a uniform channel height. The channel 

eights among the sets were varied from 100µm to 300µm with 50µm increments. Due to its low-

rate oxidization and stiction properties, mercury was utilized as the liquid metal. Syringes were 

used to accurately transport liquid metal and Teflon solution inside the channels. By increasing 

the liquid metal volume gradually, the maximum length of the liquid metal slug that can be 

repositioned inside the channel without any splitting was determined. For example, for the 250µm 

high channels, the length of the realizable liquid metal slug reduced from 50mm to 6mm as the 

channel width is increased from 0.5mm to 3mm as shown in Figure. 3.7(a). For wider widths, 
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it was not possible to form movable slugs as the liquid metal took a shape that does not cover the 

entire width of the channel. Table 3.1 presents the maximum slug lengths that could be realized 

inside the microfluidic channels. The maximum length was determined to be 50mm inside a 

250µm high and 0.5mm wide microfluidic channel. Hence, 0.5mm wide and 250µm high channel 

shape was selected for implementing the radiating section of the monopole. This choice is 

attractive for realizing the minimum operational frequency and maximizing the frequency tuning 

range. On the other hand, a wider and shorter overlap area is advantageous for maximizing the 

capacitive coupling in the feed section. This approach alleviates undesired coupled line resonances 

Figure 3.7: (a) Liquid metal flow in 250um high channels with varying widths; (b) Liquid 

metal flow characterization through different microfluidic junction layouts inter-connecting 

the 2mm (WO) and 0.5mm (Wantenna) wide channels: (i) Straight transition; (ii) 30º tapered 

transition; (iii) Capillary action mimicking transition; (iv) Round transition. 

(a) (b) 

(i) (ii) 

(iii) (iv) 

Table 3.1 Effect of channel dimensions on length of liquid metal slug 

 

Channel 

Width (w) 

Channel Height (H) 

100m 150m 200m 250m 300m 

0.5mm 11mm 25mm 36mm 50mm 45mm 

1mm 8mm 12mm 17mm 22mm 21mm 

2mm 5mm 8mm 15mm 18mm 15mm 

3mm 2mm 2mm 3mm 6mm 3mm 
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and minimizes the required liquid metal volume. From Table 3.1, it is observed that the widest 

channel that can accommodate the overall antenna volume (i.e. 0.5mm x 50mm x 250µm) is the 

2mm wide channel (i.e. 2mm x 18mm x 250µm). Consequently, 2mm wide channel is selected for 

the feed section implementation. A second set of experiments was performed to identify a junction 

shape that will provide a reliable inter-transition of the liquid metal slug between the 0.5mm and 

2mm wide channels. It is important that the liquid metal volume remains in the form of a 

continuous slug when it passes through the junction. However, the high surface tension of the 

liquid metal can prevent such a transition if the junction is not carefully designed. Figure. 3.7(b) 

depicts the junction shapes and corresponding behavior of the liquid metal slug. As can be seen 

from Figure. 3.7(b), among all the trials, the rounded junction shape was observed to provide a 

reliable operation without disrupting the continuous slug nature of the liquid metal. Therefore, this 

junction shape was selected for the antenna implementation. 

3.4.2 Design 

From the presented flow characterization studies, the maximum achievable length of the 

liquid metal slug was observed to be 50mm inside a 0.5mm wide and 250µm high microfluidic 

channel. Therefore, the antenna structure shown in Figure.3.5 was initially simulated with 50mm 

radiating length and 0.5mm width to determine the lowest resonance frequency (throughout the 

paper, Ansys HFSS v15 is used as the full-wave electromagnetic simulator). By using a direct 

electrical connection between the microstrip feed line and the monopole, the lowest resonance 

frequency was determined as fmin=1.2GHz. Hence, the minimum overlap area between the liquid 

metal and the microstrip feed line must be designed to exhibit an effective RF short ≥1.2GHz. 

The minimum overlap area was determined based on the |S21| performance of two back-to-

back liquid metal and microstrip line transitions as shown in Figure. 3.8(a). The microstrip feed 
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line had a width of Wms=5mm to achieve Z0=50Ω characteristic impedance. The width of overlap 

area was set to WO=2mm based on the flow characterization studies. The overlap length LO was 

gradually increased from 1mm to 10mm while the |S21| performances were observed over the 

1GHz-5GHz band as shown in Figure 3.8(b). Specifically, for LO=5mm, |S21|≥-0.62dB and implied 

≤0.5dB insertion loss for single transition. Larger overlap lengths did not provide further 

significant reductions in insertion loss performance. Consequently, minimum overlap length was 

selected as Lo(min) =5mm. 

Figure. 3.9 demonstrates the final dimensions of the frequency tunable liquid metal 

monopole antenna. The ground plane width was set to WG=40mm. Large ground plane lengths LG 

were found to distort the omnidirectional characteristic of the radiation pattern at frequencies 

higher than 4GHz [80]. The minimum ground plane length required was 17.5mm to be able to 

retract the entire volume of the liquid metal monopole inside the feed overlap channel. However, 

to accommodate an SMA connector, the ground plane length was enlarged to LG=25mm. This 

length was found to preserve the omnidirectional nature of the radiation pattern up to 5GHz. 

Although the antenna can be tuned to higher frequencies, the maximum operational frequency was 

Figure 3.8: (a) Back-to-back feed model (i) Top view and (ii) Bottom view for minimum 

overlap length determination (Wms=5mm, WO=2mm, HLCP=0.0254mm, HPDMS=2mm); (b) S21 

results for varying Lo. 

(a) (b) 

(i) 

(ii) 
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therefore set to fmax= 5GHz. Consequently, the antenna was designed to be operating over a ~4:1 

bandwidth from fmin =1.2GHz to fmax= 5GHz. This frequency range includes the amateur radio 

23cm (1.24-1.3GHz), PCS (1.85-1.99GHz), AWS mobile phone downlink (2.11-2.155GHz), ISM 

(2.4-2.483GHz), amateur radio 9cm (3.3-3.5GHz), C-band communication satellite downlink (3.7-

4GHz) and aeronautical radio navigation (4.2-4.2GHz) bands. 

 

To demonstrate the radiation performance, the antenna model was simulated by changing 

the radiating length LRad from 50mm to 10mm. The antenna provides continuous frequency tuning 

and representative radiation performances are specifically presented at 1.2GHz (LRad=50mm), 

2.3GHz (LRad=25mm), 3.3GHz (LRad=20mm) and 4.8GHz (LRad=10mm). As shown in Figure. 

3.10(a), the antenna operates with |S11|<-10dB impedance matching performance throughout the 

entire frequency tuning range. The |S11|<-10dB bandwidth varies between 8.33% and 16.9%. 

Figure. 3.10(b) depicts the realized peak gain as a function of tuning frequency along with the 

corresponding radiation efficiency. As seen, the radiation efficiency is relatively constant and 

larger than 84%. This implies that the variation in realized peak gain is associated with pattern 

Figure 3.9: Layout with detailed dimensions of the final antenna. 
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shaping due to the frequency dependent change in electrical size of the ground plane. Figure. 3.11 

demonstrates the realized gain patterns in the θ=90° plane. Due to the designed ground plane size, 

the pattern maintains a shape closely resembling the conventional 8-Figureure across the frequency 

tuning range. In addition, the antenna performs with an omnidirectional radiation pattern in the 

θ=0° plane. 

3.4.3 Fabrication 

The microfluidic channel was fabricated using the soft lithography steps illustrated in 

Figure. 3.12(a). The mold of the channel was prepared using 250µm thick SU8 (SU8-2075) 

photoresist spun on top of a polished silicon wafer. The PDMS polymer (Sylgard 184 Elastomeric 

Figure 3.10: (a) Simulated S11 of the wideband tunable antenna; (b) Plot of the realized gain 

of the antenna vs frequency. 

(a) (b) 

Figure 3.11: Radiation pattern of the antenna at different frequencies of the operating 

bandwidth along θ=90° 
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Kit, Dow Corning) was mixed with its curing agent in 10:1 ratio, degassed in a vacuum box to 

remove trapped air bubbles, and poured on top of the SU8 mold. The PDMS volume was adjusted 

to provide 2mm thickness after curing. The curing was accelerated by baking it in a vacuum oven 

at 100ºC for 45mins. The microfluidic connectors were formed as PDMS blocks and attached at 

the inlet and outlet of the channel using oxygen plasma bonding at 20W for 30s. After the PDMS 

layer carrying the channel was peeled off from the wafer, it was bonded with a 0.25mm thick LCP 

substrate by customizing a 3-Aminotriethoxysilane (APTES) based bonding process [81]. The 

process is demonstrated in Figure. 3.12(b). The LCP layer was immersed in a 5% volume solution 

of APTES in DI water heated to 80°C for 20mins. This results in the formation of the Si-NH2 

groups on the surface of the LCP substrate. The PDMS layer was exposed to oxygen plasma at 

20W for 30s to create Si-OH groups on the top surface. The two layers were then brought in contact 

with care to ensure that there were no trapped air bubbles in between. The layers bond 

instantaneously due to formation of Si-O-Si bonds. To further strengthen the bond, the bonded 

Figure 3.12: Fabrication procedure of the antenna, (a) Soft lithography procedure of fabricating 

the channels; (b) Procedure for irreversible bonding between PDMS and LCP. 

(a) (b) 
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layers was kept in a vacuum oven at 75°C for 10mins. The fabrication of the feed board was carried 

out with well-known PCB etching procedures.  The feed line had a 90° bend to separate the SMA 

and microfluidic connectors from each other. The feed board and channel mold masks carried 

features to generate alignment holes. After preparing the holes, the channel and the feed board 

were aligned and glued together to form the final fabricated antenna assembly as shown in Figure. 

3.13. 

3.4.4 Experimental Verification 

Figure 3.14(a) depicts the snapshots of the fabricated liquid metal monopole antenna as it 

is reconfigured to operate at various resonance frequencies. In the initial phase of the experiments, 

syringes were used to control the position of the liquid metal volume. The calculated mercury 

volume of 11.25mm3 was injected into the microchannel using the syringes. For each case shown 

in Figure 3.14(a), the radiating lengths were set to the values described in the simulation study (i.e. 

LRad = 50mm, 25mm, 20mm, 10mm) and the corresponding resonance frequencies were measured 

as shown in Figure 3.14(b). The measured response of the antenna shows a shift from the simulated 

value by 7.5% possibly due to the non-rectangular shape of the liquid metal and increase in 

insulator thickness due to the use of glue. The measured θ=90° plane realized gains are depicted 

Figure 3.13: Fabricated antenna; (a) Liquid metal enclosed in the PDMS channel, (b) RF feed 

board with 50Ω microstrip line. 

(a) 

(b) 
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in Figure 3.14(c) and match to the radiation patterns expected from the simulation based studies 

presented in Figure. 3.11. Specifically, the measured peak realized gains are 1.38dB, 1.81dB, 

2.23dB and 2.29dB at 1.29GHz, 2.48GHz, 3.53GHz and 5.17GHz, respectively. The second phase 

of the experiments were performed with commercially available piezo-actuator based micropumps 

obtained from Bartels Mikrotechnik GmbH [82] to automate the working of the liquid metal 

monopole antenna. The pumps had overall dimensions of 30×15×3.8mm2 with 2g weight and less 

than 200mW power consumption. Since the micropumps were unidirectional; two 

of them were connected in series to form the closed loop fluidic system with a bidirectional flow 

as shown in Figure. 3.15. To attain maximum flow rate (Q) inside the channel, flow 

Figure 3.14: (a) Snapshots of the antenna being reconfigured from 1.29GHz to 5.17GHz; (b) 

Measured shift in resonance frequency as liquid metal is retracted over the ground plane; (c) 

measured radiation pattern along the θ=90° elevation plane for different operating frequencies 

of the antenna. 

(a) (b) 

(c) 
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characterizations were performed to determine the amplitude and frequency of the low frequency 

(<15 Hz) alternating voltage signal used to drive the micropumps. The amplitude and frequency 

of the waveform control the pump membrane’s displacement and vibration rate, respectively. The 

alternating voltage signal was generated by the mp-x control unit of the micropump manufacturer. 

Specifically, the sine wave signal exhibiting 250 peak to peak voltage (Vpp) and 10Hz frequency 

were observed to provide a maximum flow rate of Q=0.3 mm3/sec. This is significantly lower than 

the maximum 120mm3/s water flow rate reported in the manufacturer’s data sheet. The drop in 

flow rate is partially attributed to the higher viscosity of the Teflon solution (>4.1cP) as compared 

to that of the water (0.894cP). In addition, the series connection of two pumps with opposing flow 

direction contributes to the reduced level of the flow rate by increasing the backpressure. 

Reconfiguration speed (t) is calculated as t=V/Q, where V denotes the volume of the liquid to be 

displaced. With the characterized maximum flow rate Q=0.3mm3/s, microfluidic channel height 

(H=0.25mm) and antenna dimensions (LRad=50mm at 1.29GHz, and LRad=10mm at 5.17GHz, 

Wantenna=0.5mm), the total time needed to tune the antenna across to entire frequency range can 

be calculated as t=16.66s. This matches well with the 16s reconfiguration time measured from the 

manufactured antenna assembly. To decrease the reconfiguration time, bidirectional micropumps 

Figure 3.15: Set-up for liquid metal flow characterization using micro-pumps. 
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capable of providing higher flow rates for viscous materials can be utilized (e.g. external gear and 

peristaltic pumps). 

In the third phase of the experiment, the possibility of implementing the antenna with non-

toxic liquid metal Galinstan [83] was considered. Since Galinstan is an eutectic alloy of Gallium, 

Indium and Tin, it oxidizes rapidly and requires advanced packaging. To avoid the oxidization 

related sticking, the realization of the fabricated antenna from Galinstan was carried out inside an 

Inert Lab Glove Box (Innovative Technology Inc.) that maintained the oxygen and moisture 

content to <1ppm. The antenna was observed to perform reliably inside the glove box (Figure 

3.16). The antenna fails to operate once taken outside of the glove box as a result of Galinstan 

oxidization and sticking to the channel walls. This is due to the porous nature of the PDMS. 

Nevertheless, the experiment demonstrates that hermetically sealed implementations resorting to 

hard substrates (e.g. glass) could allow to realize the proposed antenna with non-toxic Galinstan 

for long-term operation. 

Recent publications have investigated techniques to address this problem and potentially 

replace pumps with alternative actuation techniques. In reference [84], the technique of continuous 

electrowetting to implement a reconfigurable slot antenna was introduced. Reference [85] applies 

Figure 3.16: Implementation of the antenna using Galinstan. 
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a similar approach to develop a tunable amplifier using reconfigurable liquid metal based double-

stub tuners. Different from electrowetting on dielectric, electrocapillary actuation has been shown 

as a low power means to tune a liquid metal bandpass filter [86]. In [61] and [66], detailed 

discussions on practical implementation of liquid metal antennas with non-toxic Galinstan for 

long-term operation are provided. The non-toxic and high-boiling point of Galinstan make it an 

ideal candidate for implementing reconfigurable liquid metal components and circuits at room 

temperature. 

3.5 Liquid Metal Monopole Array 

The antenna shows wideband tunability that is not achieved using conventional 

reconfiguration techniques. To develop a stand-alone system though, it needs the incorporation of 

micro-pumps as discussed earlier. These pumps offer the advantage of introducing automation but 

at the same time their usage to run a single tunable antenna is not completely justified. The use of 

this microfluidic reconfiguration technique can be extended to control multiple antennas. Several 

of the liquid metal antennas arranged in the form of an array could all be connected and controlled 

using a single bi-directional pump (or two unidirectional pumps). The antennas can then be 

reconfigured similar to the single antenna element thereby resembling a wideband frequency 

tunable antenna array. The array provides the advantage of high gain as compared to a single 

element. This concept is demonstrated by developing a 4×1 frequency tunable monopole array 

discussed as follows. 

3.5.1 Design 

Four of the single liquid metal monopole antennas are linearly arranged along y-axis and 

interconnected to each other. The inlet and outlet of the array is connected to a single bi-directional 

pump unit (comprising of two unidirectional pumps). The concept figure of the 4×1 antenna array 
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is shown in Figure 3.17. The array represents a broadside antenna array with all the elements of 

the array fed in phase (β=0°). The distance between each array element (d) (Figure. 3.18(a)) had 

to be chosen in a way that it does not affect the pattern at the high frequency end of the bandwidth 

or the matching at the low frequency end. 

 

With the higher end of the operating bandwidth set at 5GHz, the inter element spacing (d) 

had to be set <60mm (λ0@5Ghz) to prevent the appearance of grating lobes. Different values of d 

starting from 10mm were investigated by HFSS simulations and the corresponding coupling (S21) 

between the array elements was observed. With increase in d, the coupling decreases as well as 

the lower frequency at which the array can operate (with coupling of less than 10dB). Taking the 

Figure 3.17: Liquid metal monopole broadside array implemented using a single bidirectional 

unit 

(a) (b) 

Figure 3.18: (a) Layout of the broadside array; (b) Radiation pattern of the tunable array at 2.5 

GHz and 5 GHz 
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above stated points into consideration along with the fabrication capabilities, the inter element 

spacing was set at d=40mm. The radiation pattern of the array along the θ=90° cut is shown in 

Figure 3.18(c). The radiation patterns shown for the array operating at 2.5GHz and 5GHz 

demonstrate the broadside pattern. 

3.5.2 Experimental Verification 

In order to automate the working of the antenna micro-pumps were incorporated as 

mentioned earlier. The pumps obtained from Bartels Mikrotechnik were characterized using an 

mp-x control unit. This unit is capable of changing the frequency and amplitude of the signal being 

supplied to the micro-pumps but only controls one pump at a time. Furthermore, the unit is bulky 

and not ideally suited for portable applications. It does serve the purpose of characterizing the 

signal specifications (100Hz, 250Vpp) needed to drive the pumps. Taking the specifications into 

consideration a microcontroller (Arduino Uno) was used in conjunction with the driving circuit 

(mp6-OEM controller) to develop the bi-directional pumping unit. The driving circuit takes two 

inputs in the form of AMPLITUDE and CLOCK to define the output signal being delivered to the 

pump. These two inputs can be defined using the microcontroller. Two push button switches were 

incorporated to sense which pump needs to be activated. By pressing and holding down these two 

switches accordingly the antenna array can be reconfigured to the desired resonant frequency. 

Figure 3.19 shows the final pumping control unit developed along with the fabricated array. 

Similar to the operation of a single liquid metal antenna the array is made to reconfigure 

by pumping the liquid metal using the two unidirectional pumps. Prior to the array operation, an 

initialization step is involved. This involves inserting the same volume of liquid metal in each 

antenna element using syringes. The corresponding inlet and outlet of each antenna are then 

connected to form a closed system with the inlet and outlet of the outside array elements connected 
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to each other through the pumping unit. As the liquid inside the channels is moved using the pumps 

the operating frequency of the array shifts. Figure 3.20(a) shows the array being reconfigured to 

the lowest operating frequency of 2.5GHz.  To make the array tune to the highest operating 

frequency of 5GHz the left pump is switched on which pushes the Teflon solution and the liquid 

metal downwards (Figure 3.20(b)). The measured gain is 6.2dB @ 2.5GHz and 8.06 dB @ 5GHz. 

The tuning speed of the array was calculated by measuring the time taken to tune from 2.5GHz to 

5GHz. The measured time was 20s which represents a tuning speed of 125MHz/s for the 2.5GHz 

to 5GHz operating bandwidth. 

3.6 Conclusion 

In this chapter microfluidically reconfigured wideband frequency tunable liquid metal 

monopoles were presented. The antenna relied on continuous moving of the liquid metal volume 

over the capacitively coupled microstrip line feed network with a micropump unit. The capacitive 

coupling at the feed point was realized by bonding microfluidic channel molds prepared in PDMS 

with thin LCP substrate. The antenna implemented using meandered couple line approach 

Figure 3.19: (a) Portable pumping unit for the antenna array; b) Initialized antenna array 

before reconfiguration. 

(a) (b) 
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demonstrated a tuning range of 1:2.9. This was improved by resorting to a tapered feed line 

approach. The antenna was measured to operate from 1.29GHz to 5.17GHz, providing ~4:1 

frequency tuning range. To ensure reliability, the antenna design was carried out by resorting to 

flow characterization studies performed over different microfluidic channel shapes. To 

demonstrate the applicability of the presented monopole in antenna arrays, a 4×1 frequency tunable 

array was developed. The array was measured to operate from 2.5GHz to 5GHz and operated with 

a single bidirectional micropump unit by resorting to interconnected microfluidic channels. In 

order the address the issue with rapid oxidation of Galinstan a new approach for implementing the 

monopole antenna is discussed in the next chapter. 

Figure 3.20: Snapshots of the array being reconfigured and the corresponding measured 

radiation pattern at; (a) Low frequency (2.5GHz), (b) High frequency (5GHz) of the operating 

bandwidth 

(a) 

(b) 
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CHAPTER 4: MICROFLUIDICALLY CONTROLLED FREQUENCY TUNABLE 

ANTENNA FOR HIGH POWER APPLICATIONS 

 

4.1 Note to Reader 

 Portions of this chapter have been previously published in [88,93], and have been 

reproduced with permission from IEEE. Permission is included in Appendix A. 

4.2 Introduction 

Microfluidic based reconfigurability has been recently proposed as an alternative technique 

to implement novel microwave components [59-77] due to its promise for achieving low cost, high 

linearity, high power handling, and wideband frequency tunability. Several frequency tunable 

antennas demonstrating these advantages have been recently introduced. For example, [87] has 

utilized liquid metal driven by continuous electro-wetting to reconfigure the electrical length of a 

slot antenna to achieve frequency tunability from 2.52GHz to 2.88GHz in discrete steps. Reference 

[59] has demonstrated a patch antenna that can be switched between GPS and ISM bands by using 

pressure driven liquid metal. Liquid metal has also been used as a reactive load to tune both bands 

of a dual band slot antenna in two discrete steps [63]. Instead of employing liquid metals as the 

tuning element, [65] has demonstrated a slot antenna that is frequency reconfigured over 3.3GHz-

4.2GHz for first resonance and 5.2GHz-8GHz for second resonance using fluids of different 

permittivity values. 

To achieve continuous and significantly increased frequency tuning range, the liquid metal 

monopole antenna realized in Chapter 3 was implemented with a capacitively coupled feed 
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mechanism. This utilized a very thin (25.4um) liquid crystal polymer (LCP) layer to seal the 

microfluidic channels prepared in PDMS [78]. This antenna operated from 1.2GHz to 4.8GHz with 

a tuning ratio of ~4:1. In this chapter, we improve the reliability of this monopole antenna by 

replacing the liquid metal with a metalized plate that can be reconfigured within the microfluidic 

channel [88] (see Figure 4.1). In addition, the microfluidic channel prepared in PDMS is 

chemically bonded to the feed board substrate RO4003C by spinning a 12µm thick layer of BCB 

insulator in contrast to the manual clamping used in our previous work. The higher conductivity 

of metalized plate, lower loss factor of BCB, and the higher thermal conductivity of the RO4003C 

substrate increases the power handling capability of this monopole antenna over the previous 

implementation. To show this, the power handling capability of these monopole antennas are 

studied for the first time through multiphysics simulations and experiments. Specifically, the 

presented monopole operates over a wide frequency tuning range from 1.7GHz to 3.5GHz (~2:1) 

with a measured realized gain >2.4dB. It exhibits 200% more power handling capability as 

compared to the prior implementation. 

4.3 Microfluidically Controlled Monopole Antenna 

4.3.1 Antenna Topology 

The layout and the substrate stack-up of the reconfigurable monopole antenna is shown in 

Figure 4.1. The antenna consists of a 0.51mm thick metallized plate (RO4003C, εr = 3.38, tan= 

0.0027 with a metallization thickness of 0.01mm) enclosed within a 0.75mm thick microfluidic 

channel. The microfluidic channel is fabricated in a 2mm thick Polydimethydisiloxane (PDMS, εr 

= 2.8, tan= 0.02) layer using soft lithography technique. A low loss ultra-thin dielectric layer of 

Benzo-cyclobutene (BCB, εr = 2.65, tan= 0.0005) is spun on top of the 1.52mm thick RO4003C 

feed board that carries the 50Ω microstrip line. The microchannel containing the metallized plate 
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is bonded to the BCB layer and then filled up with a low loss dielectric solution (FC-40, εr=1.9, 

tanδ=0.0005) using external micro-pumps. The pressure exerted by the pumps on the FC-40 

solution is used to push the metallized plate inside the microchannel. 

4.3.2 Antenna Design 

Tunability of the antenna is achieved by partially retracting the metallized plate over the 

ground plane as shown in Figure 4.2(a). The lowest operation frequency of the antenna was 

selected as 1.5GHz. The minimum overlap area needed to exhibit an RF short between the feed 

line and the metalized plate at this frequency was determined by observing the |S21| response of 

two back to back metallized plate to microstrip line transitions as depicted in Figure 4.3(a) and (b). 

The overlap area between the metallized plate and the microstrip line is governed by the WANT and 

LO values [89]. Increasing WANT lowers the insertion loss as seen in Figure 4.3(c). However, this 

also increases the fractional bandwidth of the antenna. To keep the fractional bandwidth less than 

20%, WANT was selected as 2mm. Similarly, increasing LO lowers the insertion loss as shown in 

Figure 4.3(d). However, choosing a small value for LO is important since retracting the antenna 

LO

Non-radiating Radiating

LG

WG W50W

50W 
microstrip line

LRAD

WANT

Microfluidic

channel

DSUB
DBCB

PDMS
connectors

Inlet Outlet

DCH
DPDMS

Metallized plate

DMetal

Figure 4.1: (a) Layout of microfluidically controlled monopole antenna; (b) Cross section 

view of the antenna. 

(a) 

(b) 
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Figure 4.2: (a) Frequency tuning principle of the metallized plate monopole antenna; (b) 

Corresponding simulated |S11| response of the antenna. 
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Figure 4.3: Back to back non-contact feed model of the monopole; (a) Top view; (b) Side view; 

Corresponding simulated |S21| response of the feed model with change in; (c) Width of the 

antenna (WANT); (d) Overlap length (LO). 
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over the feed line creates a coupled line resonance that eventually determines the highest operation 

frequency. The minimum value of the overlap length (LO(MIN)) was set to 5mm. With this choice, 

the plate was retracted to tune the antenna to higher frequencies and it was observed that the 

coupled line resonance did not appear up to 3.3GHz. Hence, the operation band of the antenna was 

from 1.5GHz to 3.3GHz with a 2.2:1 tuning ratio. Figure 4.2(b) demonstrates the simulated |S11| 

performances as the antenna is tuned to different frequencies by retracting the metalized plate. The 

remaining dimensions of the antenna are shown in Table 4.1. 

 

4.4 Experimental Verification 

4.4.1 Fabrication 

The microfluidic channel was fabricated using the soft lithography technique [90]. The 

feed board carrying the microstrip line and the ground plane was prepared using traditional 

photolithography and copper etching procedure. BCB was used for bonding the two substrates 

together using a customized recipe used for bonding liquid crystal polymer (LCP) and PDMS. The 

thickness of the metallized plate was selected from readily available RO4003C substrates 

(0.51mm). Experiments were conducted by fabricating microchannels of different height to 

determine the height needed for reliable movement of the metallized plate inside the microchannel. 

Experimental results yielded that for a metallized plate thickness of 0.51mm, microchannel 

thickness of 0.75mm allowed reliable movement of the plate. Figure 4.4 shows the final fabricated 

antenna prototype.  

Table 4.1 Dimensions (mm) of the antenna 

WG 45 DPDMS 2 

LG 35 DBCB 0.012 

W50  3.5 DSUB 1.52 

WANT 2 DCH 0.75 
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Commercially available mp-6 piezoelectric micro-pumps (Bartles Mikrotechnik) were 

connected to the fabricated antenna for driving the dielectric liquid FC-40 inside the microchannel. 

Two unidirectional pumps were used to implement a bidirectional pumping system using y-

connectors. The pumps were controlled using an on-chip driver circuit and two push button 

switches as shown in Figure 4.4. The driver was configured to supply a sine wave (235VPP, 

100Hz) signal. Based on the supplied data sheet, these values provide a maximum flow rate for 

water. The time taken to move the metallized plate to cover the entire tuning range was measured 

to be 1.15s implying 1565MHz/s tuning speed.  

4.4.2 Antenna Performance 

Figure 4.5(a) shows snapshots of the monopole as it is being reconfigured. The 

corresponding measured reflection coefficient for each state is shown in Figure 4.5(b). The 

measured performance of the antenna demonstrates the 2:1 tunability from 1.7GHz to 3.5GHz with 

0.2GHz shift towards higher frequency as compared to simulated performance. Since BCB 

thickness was comparable to the conductor thickness, the top surface of the BCB layer over the 

microstrip line was not uniformly planar as was also observed in [91]. The plate location along the 

Figure 4.4: Fabricated antenna. 
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depth of the channel is another potential reason for this frequency shift since the plate can be 

surrounded with dielectric liquid instead of being rest at the bottom. The radiation pattern was 

measured at different reconfiguration states along the θ=90° plane. Figure 4.6(a) shows the 

measured and simulated normalized radiation patterns at 2GHz. The measured and simulated 

realized gains are also plotted over the frequency range in Figure 4.6(b) with solid dots denoting 

the data points taken at 1.6GHz, 1.75GHz, 2GHz, 2.6GHz and 3.3GHz. As seen, the measured 

data is in agreement with the simulations with less than 0.2 dB gain difference. The radiation 

efficiency was measured with modified Wheeler cap method and was found to be in well 

agreement with simulations by being 92.4%, 88.9%, and 87.4% at 2GHz, 2.6GHz, and 3GHz, 

respectively. In experiments, it was observed that switching the pumps on/off instantaneously 

started/stopped the plate movement without any overshoot. However, a larger number of 

experiments should be carried out in a microprocessor controlled setting to verify the accuracy and 

repeatability limits of this observation. 

Figure 4.5: (a) Snapshots of the different configurations of the antenna; (b) Corresponding |S11| 

response 
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4.5 Power Handling 

Microfluidically controlled antennas have been stated to have higher power handling 

capabilities due to their linear reconfiguration nature [92]. However, to the best of our knowledge, 

no work has been presented to demonstrate their power handling capability. To assess the power 

handling capabilities of the monopole antenna through simulations, the full wave electromagnetic 

model of the antenna in Ansys HFSS was imported into Ansys Workbench to perform steady state 

thermal simulations under different RF power excitations. In order to test the high power handling 

capability of the metallized plate monopole, the antenna was simulated in ANSYS Workbench 

Platform. The antenna substrate stack-up defined in Figure 4.1 was simulated in ANSYS HFSS at 

the resonant frequencies of 1.5GHz, 2GHz, 2.5GHz, 3GHz and 3.5GHz. This was done to cover 

the entire frequency of operation of the monopole (1.5GHz-3.5GHz). The simulated structure was 

then imported into the ANSYS Workbench Platform. This operation imports the geometry and the 

associated electro-magnetic field distribution over the antenna. The EM solution of the antenna 

Figure 4.6: (a) Normalized radiation pattern of the antenna at 2GHz; (b) Plot showing 

simulated and measured realized gain at different frequency states (circle denotes the data 

points). 
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model is then coupled to a steady state thermal block which then computes the thermal distribution 

over the antenna for a specified RF input power. The simulation set-up is shown in Figure 4.7.  

The steady state simulation block in the Workbench platform has several key inputs which 

have to be defined appropriately for achieving accurate simulation accuracy. The Engineering 

Data state holds the properties of the materials assigned to the substrate stack-up of the antenna. 

The key property required for the thermal simulation is the isotropic thermal conductivity of the 

material. Table 4.2 shows the values for thermal conductivity that were used for the simulation. 

The Geometry state defines the structure on which the thermal simulation is being performed. In 

this case it was same as the geometry used for the full wave electromagnetic simulations. In the 

Model state we define the parts of the antenna geometry that will be used for the thermal 

simulation. Figure 4.8 shows the set-up used, a check mark next to a substrate component means 

it’s being used for the thermal simulation while the parts that are not are marked by a cross. In this 

simulation set-up all the geometries imported from the HFSS simulation were used except for the 

radiation box and the rectangle used to define the electrical excitation port. In the Setup state is 

where the settings for the thermal simulation are defined. The settings include state initial 

Monopole 

model 

Thermal 

simulation 

result 

Figure 4.7: Simulation set-up in ANSYS Workbench for evaluating power handling capability 

of the monopole antenna. 
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temperature, convection, load - heat flux or heat generation. The initial temperature was set to the 

room temperature where the measurement was performed (22ºC). The convection input defines 

the thermal boundary condition and it was assigned to all the antenna surfaces that are exposed to 

the surrounding air. The load input was imported from the electromagnetic simulation results. All 

the metals present in the structure were assigned as Heat Flux and all the dielectric were assigned 

as Heat Generation. Figure 4.9 shows the simulation settings described above. The results can be 

observed under the Solution state after the simulator completes the simulation. In the present case 

Table 4.2 Thermal conductivity of antenna materials 

Material Thermal conductivity (W/ m ºC) 

RO4003C 0.71 

BCB 0.29 

FC-40 0.065 

PDMS 0.15 

RT5880 0.2 

Copper 401 

 

Geometries 

being used for 

the thermal 

simulation 

Figure 4.8: Settings showing antenna geometries used in the thermal simulation 
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we observed the surface temperature distribution over the antenna model. This exercise was 

important as it helped in developing a simulation model that closely matched the measurement 

results. The simulation model could then be trusted to predict the thermal behavior of the antenna 

at higher RF power levels than that was available in our measurement lab. It also helps in predicting 

the failure point of the antenna i.e., when the surface temperature is so high that the fluid (FC-77) 

used to re-configure the antenna is compromised.  

The simulated results were then compared with measurements taken with the set-up shown 

in Figure 4.10(a). Figure 4.10(b) depicts the frequency dependent measured (dots) and simulated 

(solid lines) maximum temperature values observed on the antenna surface when the antenna was 

excited with 5W, 10W, and 15W RF power levels. Figure 4.11 also shows a comparison of the 

simulated and measured thermal profiles at 2GHz, 2.5GHz and 3GHz when the antenna was 

Figure 4.9: Steady-state thermal settings 
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excited with 15W RF input power. Specifically, after exciting with the RF power, the antenna 

temperature reached to a steady state in 35 min, 30 min, and 20 min at 2GHz, 2.5GHz, and 3GHz, 

respectively. The thermal images and reported temperatures were recorded at 45th min for all 

cases. The measured surface temperature matched with an accuracy of +/- 2°C to those obtained 

from simulations; hence, providing confidence for the simulation accuracy. The thermal profiles 

showed that the highest temperature is achieved at the feed section of the antenna. The temperature 

of the antenna increases at higher frequencies. This is expected since the simulated efficiency of 

the antenna drops with frequency increase (from 95% to 90%). Specifically, under 15W RF power 
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Figure 4.10: (a) Experimental set-up for measuring the thermal profile of the antenna under 

high RF power excitation; (b) Variation of the maximum temperature values on the antenna 

surface with change in the resonating frequency for different RF input power 
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excitation, the maximum temperature on the antenna surface is 48°C, implying 28°C increase over 

the room temperature at 3GHz. It is expected that in the presented implementation, the power 

handling of the antenna will be limited by the maximum operating temperature of the micropumps 

(70°C) which is much lower than the boiling point of the FC-40 (165°C). Based on simulated data, 

15W would be approximately the maximum power handling at the highest operational frequency 

of 3.5GHz if no additional heat sinking or cooling is employed. It is important to compare the 

Figure 4.11: Comparison between simulated and measured thermal profile of the antenna under 

15W RF excitation power at different operating frequencies. 
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power handling capability of the presented antenna with the previous implementation reported in 

[78] that relied on liquid metal, LCP, and RO5880 substrate. A simulation based performance 

comparison was carried out at 2.5GHz. It was found that in the previous antenna implementation 

a surface temperature of 35°C is reached with 5W RF power, whereas the presented antenna 

exhibits the same surface temperature with 15W RF excitation. Similar comparison trend was also 

observed for other operating frequencies and RF input powers. Hence, it can be concluded that the 

power handling capability of the presented antenna is 200% better than the previous 

implementation. In addition, in the presented antenna, replacing metalized plate with liquid metal 

(mercury, σ= 1.1e6 S/m) is found to decrease the power handling capability by a factor of 2.14. 

Although liquid metal has a significantly higher thermal conductivity than the plate material (8.30 

vs 0.71 W/m/K), both materials are located inside of an identical substrate stack-up that dominates 

the heat extraction. On the other hand, conductivity of liquid metal is about 50 times lower than 

copper. As a result, the liquid metal antenna has a lower radiation efficiency (77% vs. 92%) and 

dissipates the RF power more to generate heat. This shows the suitability of the metalized plate 

approach for high power handling. 

4.6 Miniaturization of Microfluidically Controlled Monopole 

We further investigated a similar reconfigurable monopole and miniaturize its height by 

resorting to a selectively metalized plate. This selectively metalized plate is movable inside the 

microfluidic channel and used to realize a capacitively (i.e. top) loaded monopole [93]. The 

presented monopole operates over a wide frequency range of 1.8GHz to 3.2GHz (~1.7:1) with a 

measured gain of >2.2dB. The antenna height is 0.09, which is significantly shorter than the 

monopole in the preceding section. The antenna is also capable of handling the same level of RF 
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power as shown in the previous section because the same substrate stack-up used for both the 

antennas. 

4.6.1 Antenna Topology 

The substrate stack-up and the layout of the frequency tunable miniaturized monopole 

antenna is shown in Figure 4.12. The antenna consists of a printed circuit board (PCB, R4003C, 

HPCB=1.52mm, r=3.38, tanδ=0.0027, 17µm thick copper metallization) integrated with a 

microfluidic channel realized within HPDMS=2mm thick polydimethylsiloxane (PDMS) (εr=2.8, 

tanδ=0.02). The top and bottom surfaces of the PCB partially host the 50Ω microstrip feed line 

 

(WMS=3.5mm) and ground plane. The microfluidic channel is 0.3mm (HCHANNEL) in height and 

separated from the PCB surface with a 20µm (HBCB) thick Benzocyclobutene polymer (BCB, 

εr=2.6, tanδ=0.0009) coating. Due to the 17µm thick PCB metallization and curvature of the cured 

BCB film, the BCB thickness on the feed line is expected to vary within the 3-5µm range if no 

polishing/lapping is applied to the surface. The metallized plate is realized from another PCB board 

Figure 4.12: Top loaded monopole antenna: (a) Top-view; (b) Substrate stack-up; (c) 

Frequency tuning mechanism. 

(a) 

(b) 

(c) 
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(RT6006, εr=6.15, tanδ=0.0027) that has a thickness of 0.25mm. The PDMS layer and the feed 

PCB are bonded to each other with BCB. The PDMS layer has the inlet and outlet holes that are 

connected to external micropumps. The pumps are used to flow a dielectric solution FC-40 (εr=1.9, 

tanδ=0.0005) inside the channel to push the metallized plate. The metalized plate is moved over 

the feed line (and the ground plane) to achieve continuous frequency tuning by changing the 

radiating length (Figure 4.12(c)). 

4.6.2 Antenna Design 

The lower frequency of operation is kept at 1.6GHz as it was selected in the prior work 

[88]. The size of the ground plane was also kept unchanged (45mm×35mm). At 1.6GHz, the 

overlap length between the antenna trace and feed line (i.e. LOmin) is designed as 5mm to realize 

capacitive coupling for an effective RF short [88]. The remaining antenna parameters (monopole 

height (HANT), length of the top loading trace (LTOP), and the width of the antenna trace (WANT)) 

were investigated to obtain a wideband impedance match over the operating frequency range. 

Parametric studies of HANT, LTOP and WANT were performed by simulating the antenna structure in 

Ansys HFSS v15.0. First, the width of the antenna trace was fixed (WANT=2mm) and the effect of 

HANT and LTOP on impedance matching were investigated while keeping the resonance frequency 

at 1.6GHz by reducing HANT and increasing LTOP. From Figure 4.13(a), it is observed that 

HANT=20mm and LTOP=20mm provide a good impedance match (|S11|<-10dB) whereas smaller 

HANT values are not readily matched. Next, the impedance matching at the higher frequencies were 

investigated as the antenna was retracted over the feed line by overlap length (LO). The impedance 

matching especially degrades as the top loading approaches to the ground plane due to the 

enhanced capacitive loading. This impedance degradation can be alleviated to a certain point by 
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optimizing the antenna width (WANT). As seen in Figure 4.13(b), at the high frequency end, 

WANT=3.5mm provides an improvement. However, although larger values of WANT (such as 5mm) 

improved high frequency matching further, they cause impedance mismatches at 1.6GHz. Hence, 

these impedance matching conditions defines the antenna geometry (WANT= 3.5mm, 

HANT=20mm, LTOP=20mm). Consequently, the maximum achievable antenna tuning range gets 

determined as 1.6GHz to 3.2GHz. Figure 4.14(a) depicts the simulated |S11| performance as LO is 

varied from 5mm to 20mm with 5mm increments. This agrees well with the measured data in 

Figure 4.14(b) that shows an operating range from 1.8GHz to 3.2GHz. The simulated peak gain 

Figure 4.13: Simulated |S11| response of the antenna for different (a) HANT and LTOP and (b) 

WANT. 

(a) (b) 

(a) (b) 

Figure 4.14: |S11| response of the antenna as overlap length LO is varied: (a) Simulation; (b) 

Measurement. 
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and radiation efficiencies are (2.2dB, 63.4%), (2.2dB, 68.3%), (2.1dB, 65.1%) and (2.3dB, 58.7%) 

at the resonance frequencies of 1.6GHz, 2.0GHz, 2.6GHz and 3.2GHz, respectively. 

4.6.3 Experimental Verification 

The microstrip feed line was etched on top of the RO4003C substrate using standard 

photolithography and copper etching techniques. The insulating layer of BCB was then spun on 

top of the antenna substrate and thermally cured. The microchannel was fabricated using soft-

lithography technique. The channel containing the selectively metallized plate was then bonded to 

the antenna substrate using the customized bonding recipe discussed in [94]. The piezo-electric 

micropumps (mp6-OEM, Bartels) were configured to operate with 235Vpp 100Hz signal for 

optimum flow rate of the FC-77 dielectric solution. The dielectric solution fills up the channel and 

in turn pushes the metallized plate. Figure 4.15 shows the antenna prototype and the snapshots as 

it is being reconfigured over the operating bandwidth. The measured and simulated normalized 

radiation patterns in E and H-planes at 1.8GHz and 2.6GHz are shown in Figure 4.16. The 

Figure 4.15: Antenna prototype (a) Entire set-up including pumps; (b) Snapshots of the 

antenna being reconfigured. 

(a) 

(b) 
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measured and simulated patterns are in good agreement. The peak gain of the antenna was 

measured to be 2.2dB which is in good agreement with simulation values. 

4.7 Conclusion 

A microfluidically controlled frequency tunable monopole antenna was presented. The 

monopole was implemented from a metallized plate within a microfluidic channel and excited 

through capacitive coupling. The antenna exhibited a frequency tuning range from 1.7GHz to 

3.5GHz with >2.4dB realized gain. Specifically, it was found that the presented compact antenna 

could operate with 15W of continuous RF power being limited by the highest operation frequency 

and maximum temperature handling of the utilized micropumps. The concept of microfluidically 

controlled selectively metallized plate was then used to realize a top loaded monopole antenna. 

The antenna is 0.090 in height and exhibits a wide 1.7:1 tuning range with stable radiation pattern. 

It can be concluded that using metallized plate as the reconfigurable element offers the advantage 

of developing miniaturized reconfigurable antennas with high efficiency and power handling 

capability. 

Figure 4.16: Normalized radiation pattern of the antenna at (a) 1.8GHz; (b) 2.6GHz. 

(a) (b) 
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CHAPTER 5: MICROFLUIDICALLY SWITCHED FREQUENCY TUNABLE DIPOLE 

ANTENNA 

 

5.1 Note to Reader 

 Portions of this chapter have been previously published in [100], and have been reproduced 

with permission from IEEE. Permission is included in Appendix A. 

5.2 Introduction 

The increasing demand for compact communication systems that can dynamically access 

different frequencies of the spectrum has generated strong interest for small, frequency-

reconfigurable antennas. As discussed in Chapter 2 integration of PIN diodes [7-9], MEMS 

switches [13-16] and varactors [10-12] with the antenna structures have shown to achieve 

frequency reconfiguration capabilities. To provide enhanced reconfiguration and power handling 

capabilities, liquid metals were recently proposed for frequency tuning. For such microfluidically 

controlled systems, liquid metal shape is altered to mechanically change the radiating length [79] 

or, alternatively, to act as a shorting switch that tunes the antenna electrical length [67]. Although 

antennas implemented using liquid metal have shown wide tunability range other aspects such as 

power handling and oxidization of liquid metals remain as challenges to overcome. 

As an alternative, in this chapter we propose a frequency tunable dipole antenna that 

utilizes a selectively metallized plate within the microfluidic channel. The metalized plate acts as 

a shorting switch and changes the current path or antenna geometry to tune its resonance frequency. 

We note that the microfluidic channel carrying the metalized plate is bonded to the printed antenna 
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with a 12 µm-thick low-loss Benzo-cyclobutene (BCB) layer (εr=2.65, tanδ=0.008). The proposed 

method of using a selectively metallized plate as a microfluidically controlled switch paves the 

way for various microfluidically reconfigurable RF devices that are liquid-metal-free, non-toxic, 

and reliable. 

5.3 Microfluidically Switched Dipole Antenna 

5.3.1 Antenna Topology 

Figure 5.1 depicts the antenna and associated microfluidic channel. The antenna is a 

conventional meandered dipole, fed with a 50Ω coaxial cable. It is printed on a 0.0254 mm-thick 

Rogers Ultralam 3850 liquid crystal polymer (LCP) based substrate (εr=2.9, tanδ=0.0025). A 0.75 

mm-thick, 5.2 mm-wide microfluidic channel, prepared in 2 mm-thick 15 mm-wide 

polydimethylsiloxane (PDMS, εr=2.8, tanδ=0.02), is bonded to the edge of the antenna using a 12 

µm-thick BCB layer. The microfluidic channel carries a selectively metalized plate (RT5880, 

εr=2.2, tanδ=0.0009) that moves over the antenna slots to selectively short the antenna arms and 

therefore its current path. Figure 5.1(b) shows the antenna dimensions. The reconfiguration 

principle is shown in Figure 5.2. As shown in the figure, when the selectively metallized plate is 

Figure 5.1: (a) Substrate stack-up of microfluidically tunable dipole antenna; (b) Top view of 

the antenna. 

(a) (b) 
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made to slide over the antenna trace, it shorts the radiating slots of the antenna and thereby reducing 

the electrical length of the antenna. 

5.3.2 Design 

Simulation studies were initially carried out to determine the dimension of the metallized 

area needed to create an RF short across two adjacent antenna traces. A 50Ω microstrip line  

(printed on 1.57mm-thick RT5880 substrate) loaded with the BCB (0.012 mm) and PDMS (2 mm) 

layer was modelled in Ansys HFSS v15.0. A gap of 0.5 mm width (same dimension as the 

maximum slot width) was placed along the length of the line. Different sizes of metallized plates 

were then used to capacitively short the line gap, and the corresponding |S21| was observed. We 

note that a metallization area of 5mm x 5mm was found to create an RF short with < 0.25 dB 

insertion loss. 

The antenna was designed to resonate at 0.9 GHz when none of the slots were shorted. To 

tune the antenna to a different frequency, the metallized plate moves along the antenna’s edge (see 

Figure 5.1(a)) creating a shorting effect between adjacent meandered traces. As the adjacent traces 

are shorted sequentially, the current density over the antenna geometry changes (see Figure 5.3). 

When the plate completely resides on the antenna, all adjacent traces are shorted and the highest 

Figure 5.2: Frequency reconfiguration technique of the dipole antenna 
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resonance frequency is achieved, viz. 1.4GHz. Due to the capacitance-based RF shorting, the 

current density shifts to the left side of the antenna and flows over a physically shorter length. 

Figure 5.4(a) shows the simulated |S11| as the metalized plate moves along its edge. Specifically, 

the antenna exhibits |S11|<-10dB resonances at 0.9 GHz, 0.96 GHz, 1.12 GHz, 1.28 GHz and 1.4 

GHz with 2.68%, 4.23%, 4.19% 5.85% and 9.23% bandwidths, respectively. The corresponding 

simulated realized gain patterns are shown in Figure 5.4(b). The antenna exhibits 1.02 dB, 1.15 

dB, 1.17 dB, 1.47 dB and 1.82 dB realized peak gains with 82.17%, 80.15%, 78.27%, 78.15% and 

75.32% radiation efficiencies, respectively. 

5.3.3 Experimental Verification 

Standard PCB etching procedures were used to fabricate the antenna (on 0.0254 mm 

Ultralam 3850) and the metallized plate (on 0.51 mm RT5880). The steps involved resist spinning, 

photolithography, and copper etching. The microfluidic channel was fabricated in PDMS using 

soft-lithography. A very thin layer of BCB was then spun on top of the antenna and baked in an 

Figure 5.3: Current density distribution on the antenna’s surface at different resonance 

frequencies 
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oven at 200°C to harden the BCB layer and ensure that no air bubbles were trapped in it. After the 

BCB was cured, a customized recipe was used for bonding the BCB to the PDMS layer (Figure 

5.5). The channel was then filled with low-loss FC-40 (εr=1.9, tanδ=0.0005) solution, and two 

unidirectional micropumps were used to generate a bi-directional flow system. The fabricated 
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Figure 5.4: (a) Simulated |S11| of the antenna; (b) Simulated gain pattern of the antenna at 

different frequencies of the operating bandwidth. 
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Figure 5.5: Fabrication process for (a) Making the channel; (b) Recipe for bonding the channel 

to the BCB coated printed circuit board. 

(a) 
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prototype is shown in Figure 5.6(a). Figure 5.6(c) shows the |S11| response of the antenna as the 

plate moved over its radiating slots. It is seen that the antenna resonance shifts from 0.88 GHz to 

1.39 GHz.  

5.4 Microfluidically Tunable Textile Antenna 

5.4.1 Antenna Topology 

A textile version of the dipole antenna described above was fabricated and experiments 

were conducted to incorporate the microfluidic reconfiguration technique on it. A major challenge 

 (a)   (b)  

Figure 5.6: (a) Fabricated antenna on liquid crystal polymer substrate; (b) Snapshots of the 

antenna being tuned; (c) Measured |S11| response of the antenna. 
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has been the ability to bond the PDMS microchannel enclosing the metallized plate onto the textile 

surface. Figure 5.7 summarizes the results of our bonding experiments. At first, the bonding was 

carried out using PDMS as the intermediate layer between the open side of the channel and the 

textile surface. As seen in Figure 5.7(a) this resulted in un-bonded air gaps between the two 

surfaces, leading to leakage of the liquid as it would flow through the channel. To prevent this, an 

alternative technique of using textile itself as the intermediate layer was investigated (Figure 

5.7(b)). In this technique, a blank textile surface was coated by spinning PDMS on top of it. The 

PDMS seeps inside the pores of the textile and forms an impermeable PDMS-textile layer. The 

microfluidic channel enclosing the metallized plate was then bonded to the PDMS-textile layer. 

This sealed channel was then adhered to the textile antenna surface using BCB as an adhesive. 

  |S11| measurements for the antenna that utilizes the PDMS-textile as the intermediate layer 

demonstrated that the effective separation between the textile trace and the metallized plate inside 

the channel was increased. Consequently, the metallized plate area (5mm×5mm) that was found 

to be sufficient to create an RF short in the PCB version of the antenna did not provide the same 

shorting effect and frequency tuning capability was lost. To determine the metallized plate overlap 

Figure 5.7: (a) Experimental results with bonding the microfluidic channel to the textile 

antenna; (b) Alternative bonding technique which uses an intermediate blank textile layer. 

 (a)   (b)  
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area needed to create the RF short, experimental studies were conducted by enclosing the 

metallized plate between the microchannel and the textile antenna with the PDMS-textile being 

used as the intermediate layer. From these experiments, it was observed that the metallized area 

was needed to be increased considerably (22mm×10mm) to short the antenna slots. This was a 

hindrance to the conformability/flexibility of the antenna. 

 To prevent this excessive increase in the metallized plate dimensions, we continued to 

investigate alternatives to bond the channel to the textile surface with minimal separation between 

two. The process that yielded success can be described as follows (see Figure 5.8). PDMS was 

spun on top of the textile surface (2000pm). Subsequently, 1 mil thick LCP layer was placed on 

Figure 5.8: (a) Fabrication process of the microfluidically tunable textile antenna; (b) 

Fabricated prototype. 

(a) 

(b) 
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top of the PDMS. Pressure was applied to ensure the LCP layer was adhering to the textile surface 

with no air gaps. This stack-up under the applied pressure was left to cure overnight. The thin 

intermediate PDMS layer cured and acted as the adhesive layer between the textile and the LCP 

surface. Next, the channel enclosing the metallized plate was bonded to the LCP layer (using the 

procedure described in Chapter 2). Different metallization areas were again experimentally 

investigated and it was concluded that metallization area of 11mm×8mm was adequate to provide 

an RF shorting capability. 

5.4.2 Experimental Verification 

 The experimental set-up with the micropump control unit and the antenna is shown in 

Figure 5.9(a). The corresponding measured |S11| response of the antenna at different switching 

states is shown in Figure 5.9(b). As the metallized plate is moved over the radiating slots (similar 

to the tuning principle described in Figure 5.2), the resonance frequency of the antenna shifts from 

~900MHz to 1.4GHz as also predicted with the simulation based studies. The resonance 

frequencies recorded at the different switching states are: S0=893.8MHz, S1=993.8MHz, 

S2=1206MHz, S3=1322MHz, and S4= 1400MHz.  

The radiation performance of the fabricated antenna was measured in an anechoic chamber. 

The initial gain measurements demonstrated a low realized gain value (-5dBi) although the antenna 

was well matched to the feed line. Further investigations demonstrated that the leakage to the 

unbalanced coaxial cable feed from the smaller ground plane of the antenna was the reason for this 

gain drop. This leakage situation may have been exacerbated in the anechoic chamber as well due 

to the usage of physically long coaxial cables. Due to the time constraints in constructing a 

differential balanced feed, the alternative of enlarging the ground plane during the anechoic 

chamber simulations was adopted. In addition, the feed cable transition was improved by soldering 
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the outer conductor of the coaxial cable to the ground plane. The enlarged ground plane is 

approximately 2-3 times the ground plane area of the fabricated textile antenna. Due to this 

enlargement, the radiation patterns were slightly tilted than expected from a small monopole 

antenna. Figure 5.10 presents the measured radiation patterns in two primary cuts as the antenna 

is reconfigured to operate at different frequencies. The measured peak gain in these cuts remains 

around ~0.7dBi for the un-tuned monopole (S0), ~0.98dBi for first tuning position (S1), ~1.32dBi 

for the second (S2), ~0.67dBi for the third (S3) and ~0.76dBi for the last position (S4).  These 

results agree with simulation based expectations. Further implementations of the antenna should 

consider larger ground planes or differential feeds. 

5.5 Conclusion 

A microfluidically tunable textile antenna was demonstrated in this chapter. The antenna 

is shown to tune over a frequency range of 900-1400MHz. The antenna performance was 

comparable to its printed circuit board prototype. The usage of a selectively metallized plate as a 

shorting switch was demonstrated for the first time to tune a textile antenna. Through the 

implementation of tunable monopoles and dipoles the advantages of microfluidics based 

 (a)   (b)  

Figure 5.9: (a) Experimental set-up; (b) Measured |S11| response of the antenna. 
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reconfiguration have been established. Although such devices show wide improvement in 

performance, they limit the application of microfluidic reconfiguration to discrete components. To 

demonstrate a system level integration of microfluidic reconfiguration a surface microwave 

imaging system is discussed in the next chapter.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Measured realized gain patterns of the antenna at different switching states. 
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CHAPTER 6: HIGH RESOLUTION SURFACE MICROWAVE IMAGING SYSTEM 

USING MICROFLUIDICALLY CONTROLLED METALLIZED PLATE 

 

6.1 Introduction 

Microwave imaging has progressively found its application in varied fields such as breast 

cancer screening [96] on account of its non-destructive and non-invasive diagnostic capabilities. 

Commonly used imaging configurations observe the interaction of the sample with microwaves 

and then use the scattered fields for reconstructing the image. Scanning imaging systems measure 

the amplitude and/or phase values of the reflected signals from the sample and post process the 

variations to determine the material properties. To reduce the post processing complexity, the 

imaging system presented in this chapter uses the shift in resonant frequency of a complementary 

open loop resonator when loaded with the sample to be imaged. A novel technique based on 

microfluidically controlled metallized plate has been employed as a low-cost RF readout circuitry 

to select and measure the response of each resonator from the 1D measurement plane [95]. In this 

chapter we have discussed the design procedure of the microfluidic controlled imaging system, the 

fabrication procedure of the sensor array and the control mechanism used for accurate positioning 

of the metallized plate inside the microchannel. The results from experimental verification of the 

system have also been included in this chapter. 

6.2 Operating Principle 

High resolution microwave imaging arrays have been a challenge due to the need to tightly 

pack many pixels and individually access them. This section introduces the utilization of 
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microfluidic reconfiguration techniques as RF read-out circuitries. The novel approach is shown 

in Figure 6.1 for a 1D setup. It relies on using a microfluidically repositionable metalized plate 

within a microfluidic channel. The proposed system consists of the microfluidic channel (made 

using Poly-dimethyl siloxane, PDMS) bonded to a printed circuit board (PCB) that carries the 

pixels (complementary open loop resonators) using benzocyclobutene (BCB). This bonding 

technique involves chemical treatment of the BCB layer which will be discussed later in the 

chapter. This bonding technique ensures the close proximity of the variable RF load (metallized 

plate) to the stationary metallization traces on the PCB (microstrip lines). As such, this close 

proximity to the microstrip line can be utilized as an effective RF short between the line and the 

plate. When the plate is repositioned to bridge the gap between the microstrip line and a resonator, 

the S21 reading can be used to detect the resonance frequency (or voltage) of the resonator. This 

technique is depicted in Figure 6.2. The resonance frequency of the resonator is visible in the S21 

Figure 6.1: Sub-wavelength high resolution sensor array (1D) consisting of microfluidically 

loaded microstrip line based read-out circuit. 

(a) 
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Figure 6.2: Operating principle of the microfluidically controlled imaging array; (a) Microstrip 

line loaded with the resonator; (b) Resonator loaded with sample to be investigated; (c) Effect 

of separation between microstrip line and resonator; (d) Resonator coupled to microstrip line 

using metallized plate. 

(a) 

(b) 

(c) 

(d) 
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response of the microstrip line when the resonator is placed next to it (d = 0mm) (Figure 6.2(a)). 

As the distance between them is increased the electromagnetic coupling between them decreases. 

At a certain distance (e.g. d =0.29mm in this case) the resonator does not show any effect on the 

S21 response (Figure 6.2(c)). To re-couple the resonator and the microstrip for this increased 

distance, the metallized plate is used (Figure 6.2(d)). When the resonator is loaded with a dielectric 

material, the shift in the resonance frequency and the drop in quality factor of the resonator can be 

used to determine the electrical permittivity of the material. This operation of individually 

investigating each resonator is show in Figure 6.3. This approach allows to closely pack many 

resonators within available area and can be straightforwardly extended to 2D imaging with either 

a motor controlled stage or addition of multiple rows. The next section discusses in detail the 

design procedure of the sensing array. 

 

6.3 Sensing Array 

6.3.1 Design 

The 1D array of resonators as described in the previous section form the sensing/detecting 

part of the imaging system. The first step towards designing the sensor array is choosing the 

(a) (b) 

Figure 6.3: (a) 1D array of resonators loaded with materials of different electrical permittivity; 

(b) Corresponding |S21| response of the resonators. 
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substrate for the microstrip line. In this design Rogers 6010 substrate (h = 25mils, εr = 10.2, tan 

= 0.0025) was selected as the substrate of the microstrip line. The high permittivity of the material 

enables implementation of thinner 50Ω microstrip lines which reduce the pixel size of the imaging 

system. The 50Ω microstrip line was designed using the substrate stack-up depicted in Figure 6.1. 

The width of the microstrip line was tuned to obtain a good match (|S11| < 15dB) over the desired 

frequency range 6-12GHz. (The selection of this frequency range was determined from the 

availability of off the shelf voltage controlled oscillators. This was done with a goal to potentially 

replace the vector network analyzer with VCO as the RF signal source. This will lead to 

implementation of the imaging system as a standalone unit). In the next step the complimentary 

open loop resonator (COLR) was designed. At first, the COLR was etched on the ground plane in 

the same vertical plane as the microstrip line (Figure 6.4(a)). The dimensions of the COLR (Figure 

6.4(b)) were chosen to set its resonance frequency to 11.8GHz in order to utilize the entire 

frequency band of interest (6-12 GHz). The dimensions of the resonator obtained from full wave 

simulation 

Figure 6.4: (a) Simulation set-up for designing a single open loop resonator; (b) Dimensions of 

the resonator; (c) Simulated response of the resonator loaded microstrip line. 

(a) 
(b) 

(c) 
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of the structure were lR = 1.45mm, wR = 0.1mm, gR = 0.05mm. The response of the single resonator 

loaded microstrip line is shown in Fig. 6.4 (c). The resonance is observed at 11.8GHz as expected. 

To determine the spacing needed to de-couple the resonator from the microstrip line 

parametric. studies were performed wherein the distance d (Figure 6.5(a)) was incremented and 

the corresponding |S21| was observed (Figure 6.5(b)). When the sensor array is comprised of just a 

single resonator d = 0.8mm is needed to obtain a flat |S21| response. For an 8x1 array of resonators 

(Figure 6.5(c)), the same distance d = 0.8mm does not de-couple the resonators from the read-out 

line. Parametric studies were further performed till no coupling was observed in the |S21| and it is 

observed that d=1.2mm is needed for the de-coupling for the 8×1 array. These parametric studies 

help in understanding the correlation between the number of sensing elements (resonators) and the 

pixel size (smallest detectable area) of the imaging system. For e.g., keeping the separation 

Figure 6.5: (a) 1x1 array of resonator coupled to read-out microstrip line; (b) |S21| response of 

the system as d increases; (c) 8×1 array of resonators and its corresponding |S21| response. 

(a) 

(b) 

(c) 
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distance d=1.2mm (as obtained above for an 8x1 array) the effect on the |S21| response can be 

observed as the number of elements in the array are increased (Figure 6.6 (a)). The increase in the 

number of resonators increases the coupling between them and the read-out microstrip line. Hence 

for the same de-coupling distance an array with higher number of elements will exhibit the 

resonant frequency in the |S21| response even when there is no metallized plate present between 

them. The distance (d) between the resonators and the read-out line needs to be increased to de-

couple them but that leads to a bigger pixel size. The increased separation distance would also 

need a longer metallized plate for coupling. Care needed to be taken to ensure that the self-

Figure 6.6: (a) Effect of increase in number of resonators on |S21| response of the sensing array; 

(b) |S21| response of a single resonator of the 24×1 1D sensing array and its corresponding |S11| 

response. 

(a) 

(b) 
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resonance frequency of the metallized plate (as it acts as an open circuited stub) did not appear in 

the frequency band of interest (6-12GHz). In the present design to keep the pixel size small as well 

as prevent appearance of the self-resonance frequency of the metallized plate, the number of 

elements in the sensing array were chosen to be 24 from the above parametric studies. Figure 

6.6(b) shows the overall response of the 24×1 sensing array with the metallized plate. As can be 

seen, there are two resonance frequencies in the |S21| response, one due to the coupling between 

the plate and the resonator (fR) and the other due to self-resonance of the plate (fMPR). The final 

dimensions of the 24×1 1D imaging array is shown in Fig. 6.7. The pixel size of the array is 

2.45mm×2.45mm. 

6.3.2 Fabrication 

The substrate carrying the microstrip read-out line and the open loop resonators was 

fabricated using standard photolithography and copper etching techniques. The alignment between 

the microstrip line on the top surface and the open loop resonators on the ground plane was done 

by using a backside mask aligner. Both the patterns were defined on the corresponding copper 

surface of the substrate using lithography and then subsequent copper etching. Benzocyclobutene 

Figure 6.7: Final dimensions of the 1D 24×1 imaging array 
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(BCB) was then spun on top of the microstrip lines and cured overnight in a convection oven. The 

microchannels fabricated using soft-lithography were then bonded to the BCB coated surface of 

the microstrip lines using APTES and oxygen plasma treatment technique described earlier in 

Chapter 4. The final fabricated array is shown in Figure 6.8. 

6.4 Micropump Control Unit 

Accurate control over the movement of the metallized plate inside the microfluidic channel 

is one of the key cornerstones for successful operation of the imaging system. This is achieved by 

 

the use of electronically controlled piezo-electric micropumps obtained from Bartels Mikrotechnik 

(Model: mp6) (Figure 6.9(a)). The operation of the micropumps was controlled through the use of 

Figure 6.8: (a) Final fabricated array; (b) Open loop resonator array etched on the ground plane 

used for sensing the sample 

Metallized Plate 

(a) 

(b) 

Figure 6.9: (a) Piezo-electric micropump; (b) On chip driver (mp6) for the micropump. 

(a) 

(b) 



www.manaraa.com

83 
 

on-chip driver circuits (mp6-OEM) (Figure 6.9(b)) which generate the alternating voltage signal 

needed to operate the pumps. In order to obtain bi-directional movement of the metallized plate 

inside the microchannel, two mp6 micropumps were inter-connected. The control signals for 

operating the micropumps were generated using an Arduino Uno microcontroller board. The 

signals were used to switch power between the micropumps as well as control the speed of the 

metallized plate movement. In order to prevent the microcontroller board from being overloaded 

by the current drawn by the micropumps a L293D driver circuit was used to power the 

micropumps. The circuit layout used for interfacing the mp6-OEM driver with the Arduino Uno 

is shown in Figure 6.10. The power signal from the controller was used to switch the appropriate 

micropump depending on the desired movement of the metallized plate i.e., either forward or 

backward inside the microchannel. This signal was supplied to the L293D driver which in turn 

Figure 6.10: Control circuit diagram for controlling the micropumps using a microcontroller. 
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supplied the power to the selected micropump. The amplitude signal was used to control the speed 

of the metallized plate. It was generated using the pulse width modulation (PWM) output pin from 

the Arduino Uno. By selecting appropriate duty cycle of the PWM signal, the average voltage 

supplied to the mp6-OEM driver circuit was varied. The higher the duty cycle of the pulse, the 

faster the movement of the plate. Several duty cycle values were experimented with emphasis on 

fine control of the plate movement. The value of 55 was observed to provide the best control over 

the movement of the plate.  For the current design the clock signal of the mp6-OEM driver circuit 

was hardwired to 100Hz. Different clock cycles were experimented with and 100Hz was found to 

be the value for which maximum speed was observed. The hardwiring was done by connecting the 

clock input of the driver to the clock INT pin. The assembled micropump control unit is shown in 

Figure 6.11. 

6.5 Stepper Motor Controlled Stage 

The metallized plate moving inside the microchannel is used to scan the sample in the x-

direction. For scanning in the y-direction, the sample to be imaged is mounted on a stepper motor 

Figure 6.11: Micropump control unit. 
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controlled stage. The Arduino Uno microcontroller was used to send control signals to a A4988 

driver circuit that generates all the synchronization signals needed to turn the stepper motor (Figure 

6.12). The stepper motor used is a bipolar motor with a lead screw mounted to its shaft. The sample 

stage is fixed to the shaft using a travelling nut. The nut with the mounted sample stage moves 

linearly with every rotation of the motor. The control signals from the microcontroller set the 

direction and movement of the sample stage. The resolution of the linear movement of the sample 

stage is set by the number of steps of the motor. Experimental studies performed to determine the 

number of steps needed to obtain a linear resolution of 2.45mm (determined from the pixel size) 

concluded number of steps to be 61. The assembled stepper motor controlled sample stage is shown 

in Figure 6.13. This stage enables scanning the sample in the y-direction. 

Figure 6.12: Stepper motor interface for controlling sample stage movement. 

Figure 6.13: Assembled stepper motor controlled sample stage. 
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6.6 Computer Interface Using LabVIEW 

 The individual components of the imaging system mentioned above i.e., the 1D sensor 

array, micropump control unit, stepper motor controlled stage were integrated and controlled using 

a computer interface built in LabVIEW (Figure 6.14). The in-built functions of LabVIEW Interface 

for Arduino (LIFA) library were used to build and set-up the control system of the Arduino Uno 

microcontroller. As discussed in the previous sections, the microcontroller was interfaced with the 

micropump unit to control the scanning in the x-direction (using the microfluidically controlled 

metallized plate) while the stepper motor stage controlled using the microcontroller was used to 

control the scanning in the y-direction (moving the sample stage mounted on the lead screw of the 

stepper motor). The LabVIEW interface controls the microcontroller which in turn sends control 

signals to the micropumps and the stepper motor. Each time the S21 response of the sensor array is 

to be recorded, the GPIB-USB interface between the VNA and LabVIEW is used to save the data 

in a file on the computer.  

The interface is described in detail in Figure 6.15. In the interface the on time and duty 

cycle for the micropumps is defined which determines the movement of the metallized plate, 

Figure 6.14: Block diagram of the imaging system interfaced with LabVIEW. 
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thereby the resolution of the scanning in the x-direction. The stepper stage speed input defines the 

movement of the sample stage in the y-direction, thereby the resolution of the scanning in the y-

direction. When the program is executed, it scans the sample in the x-direction using the metallized 

plate and saves the corresponding S21 response of the 1D sensor array from the vector network 

analyzer (VNA). Once the plate reaches the end of the sensor array (24th element), the stepper 

motor drives the sample stage by one step (2.45mm) in the y-direction. The sample is scanned in 

the x-direction again using the metallized plate but in the reverse direction as compared to the 

previous scan. This process is repeated till the entire sample is scanned. 

6.7 Experimental Verification 

The final assembled system is shown is Figure 6.16. To demonstrate the imaging capability 

of the assembled system, a test sample was developed with a metallized pattern etched on its 

surface. The motivation behind using such a sample was to simplify the post-processing of the 

collected data while still demonstrating the imaging procedure. When one of the resonators in the 

1D sensor array is loaded with a metal patch it exhibits a flat S21 response. The reason being 

Figure 6.15: LabVIEW interface for the imaging system. 
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that the resonator gets shorted by the overlying metal which in turn can be used to develop a binary 

image of the sample. This simplifies the need of post-processing the collected data.  

 The metallized pattern of the sample is shown in Figure 6.17(a). The sample was designed 

to fit within the 24×24 pixel scanning area of the imaging system. The size of a pixel is 2.45mm× 

2.45mm. The grid of the 24×24 pixels is overlaid on top of the fabricated sample to help in 

correlating with the imaged result shown later in the chapter. As discussed in the previous section, 

when the resonator is loaded with a metal patch it exhibits a flat S21 response. It was observed that 

the same behavior is exhibited by the resonator even in cases of partial overlapping with a metal 

patch. For the all cases shown in the Figure 6.18, the resonator when interrogated by the metallized 

plate does not show any resonance in its S21 response. All these cases are read as ‘1’ meaning metal 

is present on top of the resonator while a ‘0’ is read when the resonance is present. 

Figure. 6.16: Assembled imaging system. 
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 The binary image generated by the system is shown in Figure 6.19(b). The different size 

of the letters etched on the sample were used as different test cases. These cases help in 

Figure 6.17: (a) Pattern of the sample to be imaged; (b) Fabricated sample on Rogers 4003 

substrate. 

(a) 

(b) 

Figure 6.18: Demonstrating the test cases of metal overlap with the resonators. 
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understanding the imaging resolution of the current system. As can be seen from the imaged data, 

for many of the test cases the imaged data does not resemble the etched metal pattern. For example, 

when the metal pattern is smaller than the pixel itself, the system is not able to distinguish between 

the different letters. The last case on the test sample is the one which the system was able to 

distinguish as separate distinct letters. This experiment thus demonstrates the imaging resolution 

of the present system.   

6.8 Conclusion 

 In this chapter a microfluidically controlled imaging system is presented. The 1D array of 

complimentary open loop resonators is interrogated with a microfluidically controlled metallized 

plate. A stepper motor driven sample stage is incorporated under the sensor array for extending 

2D imaging capability to the system. The system is also interfaced with a computer to provide 

automated control over the movement of the plate, the stepper motor controlled stage and saving 

the data from the VNA. The imaging capability is demonstrated by scanning a test sample with a 

metal pattern etched on its surface. The prospects of such an imaging system towards dielectric 

imaging is discussed in the next chapter.   

Figure 6.19: (a) Pattern of the sample to be imaged; (b) Imaged data. 

(a) 
(b) 
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CHAPTER 7: CONCLUSION 

 

7.1 Summary 

 The ever-increasing demand for multifunctional wireless communication systems has 

generated a lot of interest towards developing frequency reconfigurable antennas. These antennas 

offer the advantage of dynamically adjusting their resonating frequency over fixed operation ones. 

To alleviate the drawbacks of conventional reconfiguration techniques, in this dissertation 

microfluidics based reconfiguration was proposed as an alternative technique. The advantages of 

microfluidic reconfiguration were then demonstrated through the design and experimental 

verification of frequency tunable monopole and dipole antennas as summarized below. 

A wideband frequency tunable liquid metal monopole antenna was demonstrated. The 

liquid metal monopole was shown to have a 4:1 tuning range. The antenna was measured to have 

a tuning speed of 250MHz/s and exhibited stable radiation pattern over the entire tuning range. 

This technique of microfluidically manipulating liquid metal slugs inside microchannels was 

further implemented to develop a 2:1 frequency tunable high gain antenna array. The 4 × 1 antenna 

array demonstrated >6dB broadside gain and tuning speed of 125MHz/s. The reliability of the 

liquid metal monopole antenna was improved by resorting to using metallized plate as the radiating 

element. The antenna was shown to exhibit similar wide tuning range, stable gain and radiation 

pattern over the tuning range. An experimental set-up was developed to verify the high-power 

handling capability of the microfluidically reconfigured monopole. The antenna demonstrated 

stable operation for up to 15W of RF input power. 
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Different from the above mentioned approach wherein the microfluidic load was used as 

the main radiating element, a frequency tunable dipole antenna was developed using microfluidic 

loads (selectively metallized plate) as RF switches. The selectively metallized plate acts as the 

shorting switch and changes the current path on the antenna geometry to tune its resonance 

frequency. A bonding procedure was developed to bond the microfluidic channel to a thin layer of 

low loss dielectric. This enabled proximity between the antenna trace and the metallized plate 

leading to a high level of RF coupling which was required to short out the radiating slots. The 

antenna showed a measured tunability of 0.88 GHz to 1.39 GHz. The concept was then applied to 

develop a frequency tunable textile antenna intended for body worn applications. 

To further demonstrate the advantage of microfluidics based reconfigurability, a surface 

imaging system was presented. A microfluidically controlled metallized plate was used as a RF 

shorting switch to develop a convenient read-out mechanism for interrogating a high resolution 

planar array of sub-wavelength resonators. The read-out of the array was carried out using a single 

bi-directional micropump unit. To achieve 2D imaging capability, a stepper motor controlled 

sample stage was placed under the resonator array. All the components of the system were 

assembled on a single board. For the sake of experimental demonstration, the vector network 

analyzer (VNA) was used as the signal source and detector. Computer interface for controlling all 

the components of the system was build using LabVIEW. An image of a test sample with metal 

pattern etched on its surface was imaged using the system. The extracted image showed good 

correlation to the fabricated sample. This work demonstrated low-cost realization of a microwave 

imaging system which can be extended to develop large format high resolution imaging arrays. 

There are still certain aspects which need to be explored and have been summarized in the next 

section. 
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7.2 Future Work 

7.2.1 Improvement in 2D Imaging Technique  

The imaging system presented in this dissertation involved using a stepper motor controlled 

stage to achieve 2D imaging capability. Although this is a convenient way of controlling the 

imaging resolution in the y-dimension, the bulky stepper motor increases the power consumption 

and increases the overall footprint of the system. An alternative technique for achieving 2D 

imaging is shown in Figure 7.1. The read-out of the array can be performed with a single bi-

directional micropump unit. The S21 measurements of each line can be carried out sequentially 

(using SP2T switch per line) or simultaneously (using individual S21 measurement circuitry per 

line). This arrangement eliminates the requirement of the stepper motor stage at the cost of more 

RF components such as switches.  

 

7.2.2 Dielectric Imaging  

 A major goal of the future work would be to employ the system for dielectric imaging. The 

current system is capable of imaging dielectrics with dielectric constant as high as 50. To 

demonstrate the concept through a preliminary study, an 8 × 8 array of resonators was modeled in 

Figure 7.1: 2D microwave imaging system consisting of microfluidically loaded 

transmission line based read-out circuitries. 
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close proximity of a breast tissue slice (r=9.6, σ=0.8S/m) [97, 98] having a tumorous (r=9.6, 

σ=0.8S/m) [97, 98] inclusion. The array and tissue size were chosen to keep the numerical 

simulations less time consuming. As shown in Figure 7.2, the image extracted from simulated S21 

readings (as the metallized plate slides over the resonators) could resolve the tumor inclusion. A 

major goal of the future work will be to experimentally verify dielectric imaging using the system. 

7.2.3 Standalone Imaging System 

 In the design procedure of the imaging system it was mentioned that the operating 

frequency range of the system was chosen to be 6-12GHz. The reason for choosing this range was 

to incorporate a voltage controlled oscillator (VCO) as the RF source of the imaging system. By 

using an RF detector at the other end of the microstrip line, the motivation was to replace the bulky 

VNA being used to perform the measurements in the current set-up. This would lead to the imaging 

system working as a standalone system. A concept figure of the standalone system is shown in 

Figure 7.3.  

Figure 7.2: Example of a 2D image extracted from simulated S21 readings as the metallized 

plate slides over the resonators placed over the tissue sample. 
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Figure 7.3: Concept block diagram of the envisioned 2D microwave imaging system. 
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